Topological heavy fermions in magnetic field.

Nat Commun

National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.

Published: June 2024

The recently introduced topological heavy fermion model (THFM) provides a means for interpreting the low-energy electronic degrees of freedom of the magic angle twisted bilayer graphene as hybridization amidst highly dispersing topological conduction and weakly dispersing localized heavy fermions. In order to understand the Landau quantization of the ensuing electronic spectrum, a generalization of THFM to include the magnetic field B is desired, but currently missing. Here we provide a systematic derivation of the THFM in B and solve the resulting model to obtain the interacting Hofstadter spectra for single particle charged excitations. While naive minimal substitution within THFM fails to correctly account for the total number of magnetic subbands within the narrow band i.e., its total Chern number, our method-based on projecting the light and heavy fermions onto the irreducible representations of the magnetic translation group- reproduces the correct total Chern number. Analytical results presented here offer an intuitive understanding of the nature of the (strongly interacting) Hofstadter bands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187166PMC
http://dx.doi.org/10.1038/s41467-024-49531-3DOI Listing

Publication Analysis

Top Keywords

heavy fermions
12
topological heavy
8
magnetic field
8
interacting hofstadter
8
total chern
8
chern number
8
magnetic
4
fermions magnetic
4
field introduced
4
introduced topological
4

Similar Publications

The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3  K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.

View Article and Find Full Text PDF

Superconducting critical temperature elevated by intense magnetic fields.

Proc Natl Acad Sci U S A

January 2025

Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Below a critical temperature [Formula: see text], superconductors transport electrical charge without dissipative energy losses. The application of a magnetic field [Formula: see text] generally acts to suppress [Formula: see text], up to some critical field strength at which [Formula: see text] 0 K. Here, we investigate magnetic field-induced superconductivity in high-quality specimens of the triplet superconductor candidate UTe[Formula: see text] in pulsed magnetic fields up to [Formula: see text] [Formula: see text] 70 T.

View Article and Find Full Text PDF

Epitaxy, a process to prepare crystalline materials in nanostructures and thin films, is the core technology for preparing high-quality materials as a key enabler of next-generation microelectronics and quantum information system. Progress in epitaxy has been expanding the choice of materials and their heterostructures beyond the combinations limited by materials compatibility. However, the improvement of material quality, physical implementation of materials with unique properties, and integration of incommensurate materials in an architecture have been the challenging issues.

View Article and Find Full Text PDF

Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.

View Article and Find Full Text PDF

Ultrafast optical induction of magnetic order at a quantum critical point.

J Phys Condens Matter

December 2024

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America.

Time-resolved ultrafast spectroscopy has emerged as a promising tool to dynamically induce and manipulate non-trivial electronic states of matter out-of-equilibrium. Here we theoretically investigate light pulse driven dynamics in a Kondo lattice system close to quantum criticality. Based on a time-dependent auxiliary fermion mean-field calculation we show that light can dehybridize the local Kondo screening and induce oscillating magnetic order out of a previously paramagnetic state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!