Nanozymes, which can selectively scavenge reactive oxygen species (ROS), have recently emerged as promising candidates for treating ischemic stroke and traumatic brain injury (TBI) in preclinical models. ROS overproduction during the early phase of these diseases leads to oxidative brain damage, which has been a major cause of mortality worldwide. However, the clinical application of ROS-scavenging enzymes is limited by their short in vivo half-life and inability to cross the blood-brain barrier. Nanozymes, which mimic the catalytic function of natural enzymes, have several advantages, including cost-effectiveness, high stability, and easy storage. These advantages render them superior to natural enzymes for disease diagnosis and therapeutic interventions. This review highlights recent advancements in nanozyme applications for ischemic stroke and TBI, emphasizing their potential to mitigate the detrimental effect of ROS overproduction, oxidative brain damage, inflammation, and blood-brain barrier compromise. Therefore, nanozymes represent a promising treatment modality for ROS overproduction conditions in future medical practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c03425 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!