Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: A novel nomogram incorporating artificial intelligence (AI) and clinical features for enhanced ultrasound prediction of benign and malignant breast masses.
Materials And Methods: This study analyzed 340 breast masses identified through ultrasound in 308 patients. The masses were divided into training (n = 260) and validation (n = 80) groups. The AI-based analysis employed the Samsung Ultrasound AI system (S-detect). Univariate and multivariate analyses were conducted to construct nomograms using logistic regression. The AI-Nomogram was based solely on AI results, while the ClinAI- Nomogram incorporated additional clinical factors. Both nomograms underwent internal validation with 1000 bootstrap resamples and external validation using the independent validation group. Performance was evaluated by analyzing the area under the receiver operating characteristic (ROC) curve (AUC) and calibration curves.
Results: The ClinAI-Nomogram, which incorporates patient age, AI-based mass size, and AI-based diagnosis, outperformed an existing AI-Nomogram in differentiating benign from malignant breast masses. The ClinAI-Nomogram surpassed the AI-Nomogram in predicting malignancy with significantly higher AUC scores in both training (0.873, 95% CI: 0.830-0.917 vs. 0.792, 95% CI: 0.748-0.836; p = 0.016) and validation phases (0.847, 95% CI: 0.763-0.932 vs. 0.770, 95% CI: 0.709-0.833; p < 0.001). Calibration curves further revealed excellent agreement between the ClinAI-Nomogram's predicted probabilities and actual observed risks of malignancy.
Conclusion: The ClinAI- Nomogram, combining AI alongside clinical data, significantly enhanced the differentiation of benign and malignant breast masses in clinical AI-facilitated ultrasound examinations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2024.05.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!