Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Insects exhibit remarkable adaptability in their locomotive strategies in diverse environments, a crucial trait for foraging, survival, and predator avoidance. Microvelia americana, tiny 2-3 mm insects that adeptly walk on water surfaces, exemplify this adaptability by using the alternating tripod gait in both aquatic and terrestrial terrains. These insects commonly inhabit low-flow ponds and streams cluttered with natural debris like leaves, twigs, and duckweed. Using high-speed imaging and pose-estimation software, we analyze M. americana movement on water, sandpaper (simulating land), and varying duckweed densities (10%, 25%, and 50% coverage). Our results reveal M. americana maintain consistent joint angles and strides of their upper and hind legs across all duckweed coverages, mirroring those seen on sandpaper. Microvelia americana adjust the stride length of their middle legs based on the amount of duckweed present, decreasing with increased duckweed coverage and at 50% duckweed coverage, their middle legs' strides closely mimic their strides on sandpaper. Notably, M. americana achieve speeds up to 56 body lengths per second on the deformable surface of water, nearly double those observed on sandpaper and duckweed, which are rough, heterogeneous surfaces. This study highlights M. americana's ecological adaptability, setting the stage for advancements in amphibious robotics that emulate their unique tripod gait for navigating complex terrains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icae078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!