A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Water Quality Prediction Model for the Pearl River Estuary Based on BiLSTM Improved with Attention Mechanism]. | LitMetric

To improve the accuracy and stability of water quality prediction in the Pearl River Estuary, a water quality prediction model was proposed based on BiLSTM improved with an attention mechanism. The feature attention mechanism was introduced to enhance the ability of the model to capture important features, and the temporal attention mechanism was added to improve the mining ability of time series correlation information and water quality fluctuation details. The new model was applied to the water quality prediction of eight estuaries of the Pearl River, and the prediction performance test, generalization ability test, and characteristic parameter expansion test were carried out. The results showed that:① The new model achieved high prediction accuracy in the water quality prediction of the Zhuhaidaqiao section. The root-mean-square error (RMSE) between the predicted value and the measured value was 0.004 1 mg·L, and the coefficient of determination () was 98.3 %. Compared with that of Multi-BiLSTM, Multi-LSTM, BiLSTM, and LSTM, the results showed that the new model had the highest prediction accuracy, which verified the accuracy of the model. ② Both the number of training samples and the number of forecasting steps affected the prediction accuracy of the model, and the prediction accuracy of the model increased with the increase of the training samples. When predicting the total phosphorus of the Zhuhaidaqiao section, more than 240 training samples could obtain higher prediction accuracy. Increasing the number of prediction steps caused the prediction accuracy of the model to decline rapidly, and the reliability of the model prediction could not be guaranteed when the number of prediction steps was greater than 5. ③ When the new model was applied to the prediction of different water quality indexes in eight estuaries of the Pearl River, the prediction results had high precision and the model had strong generalization ability. The input data of upstream water quality, rainfall, and other characteristic parameters associated with the section prediction index of the object could improve the prediction accuracy of the model. Through many tests, the results showed that the new model could meet the requirements of precision, applicability, and expansibility of water quality prediction in the Pearl River Estuary and thus is a new exploration method for high-precision prediction of water quality in complex hydrodynamic environments.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202306024DOI Listing

Publication Analysis

Top Keywords

water quality
36
prediction accuracy
28
quality prediction
24
prediction
21
pearl river
20
accuracy model
20
model
15
river estuary
12
attention mechanism
12
training samples
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!