Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To improve the accuracy and stability of water quality prediction in the Pearl River Estuary, a water quality prediction model was proposed based on BiLSTM improved with an attention mechanism. The feature attention mechanism was introduced to enhance the ability of the model to capture important features, and the temporal attention mechanism was added to improve the mining ability of time series correlation information and water quality fluctuation details. The new model was applied to the water quality prediction of eight estuaries of the Pearl River, and the prediction performance test, generalization ability test, and characteristic parameter expansion test were carried out. The results showed that:① The new model achieved high prediction accuracy in the water quality prediction of the Zhuhaidaqiao section. The root-mean-square error (RMSE) between the predicted value and the measured value was 0.004 1 mg·L, and the coefficient of determination () was 98.3 %. Compared with that of Multi-BiLSTM, Multi-LSTM, BiLSTM, and LSTM, the results showed that the new model had the highest prediction accuracy, which verified the accuracy of the model. ② Both the number of training samples and the number of forecasting steps affected the prediction accuracy of the model, and the prediction accuracy of the model increased with the increase of the training samples. When predicting the total phosphorus of the Zhuhaidaqiao section, more than 240 training samples could obtain higher prediction accuracy. Increasing the number of prediction steps caused the prediction accuracy of the model to decline rapidly, and the reliability of the model prediction could not be guaranteed when the number of prediction steps was greater than 5. ③ When the new model was applied to the prediction of different water quality indexes in eight estuaries of the Pearl River, the prediction results had high precision and the model had strong generalization ability. The input data of upstream water quality, rainfall, and other characteristic parameters associated with the section prediction index of the object could improve the prediction accuracy of the model. Through many tests, the results showed that the new model could meet the requirements of precision, applicability, and expansibility of water quality prediction in the Pearl River Estuary and thus is a new exploration method for high-precision prediction of water quality in complex hydrodynamic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202306024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!