Purpose: The aim of this study was to analyze the reliability and validity of the predicted distance-time relationship in the severe-intensity domain from a 3-minute all-out running test (3MT).
Methods: Twelve runners performed two 3MTs (test #1 and test #2) on an outdoor 400-m track after familiarization. Eighteen-hertz Global Positioning System data were used to estimate critical speed (CS) and distance covered above CS (D'). Time to cover 1200 and 3600 m (T1200 and T3600, respectively) was predicted using CS and D' estimates from each 3MT. Eight runners performed 2 time trials in a single visit to assess real T1200 and T3600. Intraclass correlation coefficients (ICCs) and standard errors of measurement were calculated for reliability analysis.
Results: Good to excellent reliability was found for CS, T1200, and T3600 estimates from 3MT (ICC > .95, standard error of measurement between 1.3% and 2.2%), and poor reliability was found for D' (ICC = .55, standard error of measurement = 27%). Predictions from 3MT were significantly correlated to actual T1200 (r = .87 and .85 for test #1 and test #2, respectively) and T3600 (r = .91 and .82 for test #1 and test #2, respectively). The calculation of error prediction showed a systematic error between predicted and real T3600 (6.4% and 7.8% for test #1 and test #2, respectively, P < .01) contrary to T1200 (P > .1). Random error was between 4.4% and 6.1% for both distances.
Conclusions: Despite low reliability of D', 3MT yielded a reliable predicted distance-time relationship allowing repeated measures to evidence change with training adaptation. However, caution should be taken with prediction of performance potential of a single individual because of substantial random error and significant underestimation of T3600.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/ijspp.2023-0518 | DOI Listing |
N Engl J Med
November 2022
From the Center for Cardiovascular Disease Prevention, Division of Preventive Medicine (A.D.P., R.J.G., J.G.M., E.S.Z., B.M.E., N.P.P., J.E.B., P.M.R) and the Division of Cardiovascular Medicine (B.M.E.,P.L., P.M.R.), Brigham and Women's Hospital, the Division of Cardiovascular Medicine, Veteran Affairs Boston Health Care System (A.D.P., J.J.), and Kowa Pharma Development (R.O.) - all in Boston; University of Lille, Lille (J.-C.F.) and the Department of Neurology and Stroke Center, Paris Cité University, Paris (P.A.) - both in France; Kowa Research Institute, Morrisville, NC (S.E.C.); the Division of Lipidology, Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); Utah Lipid Center, Salt Lake City (E.A.B.); the University of Colorado School of Medicine, Aurora (R.H.E.); the University of Tennessee Health Science Center, Memphis (M.B.E.); the Division of Endocrinology, Universitário Hospital João de Barros Barreto, Belém (J.S.F.), and the Heart Institute (InCor), University of São Paulo Medical School Hospital, and Hospital Israelita Albert Einstein (R.D.S.), São Paulo - all in Brazil; Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.); Queen Giovanna University Hospital, Sofia, Bulgaria (A.G.); Jichi Medical University, Shimotsuke (S.I.), the Research Center for Advanced Science and Technology, University of Tokyo, Tokyo (T.K.), and Chiba University Graduate School of Medicine, Chiba (K.Y.) - all in Japan; Deutsches Herzzentrum München, Technische Universität München and German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich (W.K.), Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm (W.K.), and Rheinisch-Westfälische Technische Hochschule Aachen, University Hospital Aachen, Aachen (N.M.) - all in Germany; McMaster University and Population Health Research Institute, Hamilton, ON (P.A.) and the Division of Endocrinology and Metabolism, St. Michael's Hospital, University of Toronto, Toronto (L.A.L.) - both in Canada; Docencia, Asistencia Médica e Investigación Clínica Medical Institute-Rusculleda Foundation for Research, Córdoba, Argentina (A.J.L.); Shupyk National Healthcare University of Ukraine, Kyiv (B.M.); Copenhagen University Hospital-Herlev Gentofte, University of Copenhagen, Copenhagen (B.G.N.); the Department of Medical Clinical Pharmacology, University of Debrecen, Debrecen, Hungary (D.P.); the Department of Primary Care and Public Health, Imperial College London, London (K.K.R.), and the Department of Endocrinology, Diabetes, and Metabolism, Manchester University Hospital NHS Foundation Trust, Manchester (H.S.) - both in the United Kingdom; the Russian Academy of Postgraduate Medical Education, Moscow (A.S.); and the Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland (M.T.).
Background: High triglyceride levels are associated with increased cardiovascular risk, but whether reductions in these levels would lower the incidence of cardiovascular events is uncertain. Pemafibrate, a selective peroxisome proliferator-activated receptor α modulator, reduces triglyceride levels and improves other lipid levels.
Methods: In a multinational, double-blind, randomized, controlled trial, we assigned patients with type 2 diabetes, mild-to-moderate hypertriglyceridemia (triglyceride level, 200 to 499 mg per deciliter), and high-density lipoprotein (HDL) cholesterol levels of 40 mg per deciliter or lower to receive pemafibrate (0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!