The effects of selenium biofortification methods involving sodium selenite and selenium yeast on the structural characteristics, antioxidant activity and binding capacity of Pleurotus eryngii polysaccharides were investigated. Sodium selenite Se-enriched Pleurotus eryngii polysaccharides (Se-SPEP), selenium yeast Se-enriched Pleurotus eryngii polysaccharides (Se-YPEP), and Pleurotus eryngii polysaccharides (PEP) had Se contents of 20.548 ± 1.561, 19.822 ± 0.613, and 0.052 ± 0.016 μg/g, respectively. Compared with PEP, Se-SPEP and Se-YPEP had lower molecular weight and contained the same monosaccharides in varying molar ratios. The results of FT-IR, PS, ZP, and SEM indicated significant alterations in structural characteristics following selenium biofortification. Se-PEPs exhibited superior activity against ABTS, DPPH, and ·OH radicals, as well as the higher binding capacity for Cd and Cu compared to natural polysaccharides. The binding capacity of the polysaccharides for Cd and Cu was higher at pH 6.8 compared to pH 2.0, while the opposite was observed for Pb. Furthermore, Se-PEPs exhibited a significantly higher binding capacity for Cd and Cu at both pH levels compared to natural polysaccharides (P < 0.05). Se-YPEP displayed higher antioxidant activity than Se-SPEP, with their binding capacities reversed. These data indicated that selenium biofortification methods have different positive impacts on the structure and activity of polysaccharides compared to natural polysaccharides, making Se-PEPs promising dietary supplements for safeguarding the body against the risks posed by food-derived heavy metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133214DOI Listing

Publication Analysis

Top Keywords

pleurotus eryngii
20
eryngii polysaccharides
20
binding capacity
20
selenium biofortification
12
structural characteristics
12
effects selenium
8
biofortification methods
8
polysaccharides
8
characteristics antioxidant
8
antioxidant activity
8

Similar Publications

White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.

View Article and Find Full Text PDF

King oyster mushroom Pleurotus eryngii is cultivated worldwide for culinary and to improve human health. However, the potential of some Mediterranean representatives of this species is still not evaluated. This work focuses on the study of polysaccharides from fruiting bodies of two Tunisian strains, P.

View Article and Find Full Text PDF

High internal phase Pickering emulsions stabilized by Pleurotus eryngii protein-polysaccharide conjugates.

Int J Biol Macromol

January 2025

College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China.

In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity.

View Article and Find Full Text PDF

is a tasty and low-calorie mushroom containing abundant high-quality protein. This study aims to improve the digestibility of protein (PEP) and hence to facilitate its development as a healthy alternative protein. The extracted PEP was pretreated with 1000-5000 U of papain, neutral protease and alkaline protease.

View Article and Find Full Text PDF

The aim of fungal treatment of organic matter for ruminants is the improvement of its degradability. So far, such treatment appears to be time-consuming and improvement has been modest. In previous work, we observed within three white rot species that there is modest () or low ( and ) variation in fiber degradation in wheat straw during seven weeks of incubation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!