In recent years, the surge in plastic production has led to pervasive pollution across all environments, earning us the title of inhabiting a "plastic world." Consequently, this research endeavors to explore alterations in biochemical parameters, liver enzymes, and tissue integrity within the gills, intestines, and liver of black fish subjected to polyvinyl chloride (PVC) microplastics and paraquat herbicide, both individually and in combination. For this purpose, we allocated 90 blackfish specimens into 9 groups consisting of 10 individuals each through random selection. Following a period of 28 days, we carried out an assessment to investigate the toxic effects of PVC and paraquat, both separately and in combination. Subsequently, The results indicate that the number of red blood cells (RBCs, millions/mm) in all studied groups (Group G: 3.6 ± 0.18; Group H: 3.5 ± 0.17; and Group I: 3.2 ± 0.16) is significanly lower than the control group (Pvalue<0.05). The glucose levels in all studied groups (Group B: 47 ± 5.12; Group C: 48 ± 3.79; Group D: 51 ± 4.14; Group E: 48 ± 5.37; Group F: 53 ± 7.48; Group G: 53 ± 9.24; Group H: 58 ± 10.43; and Group I: 61 ± 8.71) are higher than the control group (46 ± 3.71). The results indicate that the levels of AST enzyme in all studied groups (group B: 30 ± 0.17; group C: 32 ± 1.61; group D: 34 ± 1.92; group E: 33 ± 1.17; group F: 38 ± 2.27; group G: 38 ± 1.71; group H: 43 ± 2.15; and group I: 46 ± 2.33). Groups F, G, H, and I exhibit significantly higher levels of AST enzyme compared to the control group, with a p-value<0.05. Morphological changes observed in erythrocytes include deformation and cell vacuolation. The maximum amount of changes in the morphology of erythrocytes occurs when black fish is exposed to 2 mg/L of PVC and 0.4 mg/L of paraquat (group I). The histological harm caused by the combination of PVC and paraquat is significant. Findings indicate that increasing the concentration of both microplastics and paraquat enhances their toxicity when combined. Consequently, it's imperative to assess the toxic impact of microplastics (MPs) and paraquat individually, as well as in combination, on aquatic organisms to safeguard them from the detrimental effects of these substances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142643 | DOI Listing |
RSC Adv
January 2025
Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium
Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.
View Article and Find Full Text PDFJ Vis Exp
December 2024
School of Engineering and Materials Science, Queen Mary University of London.
Under current minimally invasive treatment regimes, minor tooth preparation and thinner biomimetic ceramic restoration are used to preserve the restored tooth's vitality, aesthetics, and function. New computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic-like material are now available. To guarantee longevity, a dental clinician must know these newly launched product's mechanical strength compared to the relatively brittle glass-matrix ceramic.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:
The co-existence of microplastics (MPs) and organic pollutants on agricultural ecosystems pose potential implications for both food safety and environmental integrity. The combined effects of MPs with Dechlorane Plus (DP), a newly listed banned flame retardant, remain unknown. This study explores the biological responses of soybean plants to exposure from polyethylene (PE) and polyvinyl chloride (PVC) MPs and DP.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:
Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!