Atmospheric cold plasma as a novel approach to remediating microplastics pollution in water.

Environ Pollut

Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA. Electronic address:

Published: September 2024

Microplastics (MPs) have become an environmental and health threat to aquatic species and humans because they are small and can easily reach water bodies for municipal and agricultural uses. MPs have been traced in food commodities and products derived from animals and even found in bottles of drinking water. Current treatment techniques for permanently destroying MPs require high energy inputs and thus are generally cost-inefficient. Atmospheric cold plasma (ACP) is a low-cost energy-efficient technology to produce highly reactive species that can induce physicochemical changes in plastic polymers. This study, for the first time, used ACP as a novel method for MPs treatment. Polypropylene (PP) and low-density polyethylene (LDPE) were used to prepare model MPs. The effects of plasma working gas (oxygen, nitrogen, or their mixture) and post-ACP treatment storage (24 h) on MPs were studied. ACP treatments for 30 min successfully degraded both MPs, by 1.4-11.3% in weight. PP MPs had larger weight reduction than LDPE and the ACP of mixture gas was most effective. PP MPs also showed increased carbonyl index after treatments, to up to 6.89, indicating hydrolytic degradation. For LDPE MPs, oxygen ACP caused more oxidation, but storage did not have an enhancing effect. The results of physicochemical analyses indicated that MPs degradation by ACP was possibly mainly through oxidative and hydrolytic reactions, but further characterizations are needed. This study proves that ACP is a promising strategy to remediate MPs pollution, and thus has great potential for addressing the severe challenges of MPs that the food and agriculture sectors are currently facing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124390DOI Listing

Publication Analysis

Top Keywords

mps
13
atmospheric cold
8
cold plasma
8
acp
7
plasma novel
4
novel approach
4
approach remediating
4
remediating microplastics
4
microplastics pollution
4
pollution water
4

Similar Publications

Systematic optimisation of crude buccal swab lysate protocols for use with the ForenSeq™ DNA Signature Prep Kit.

Int J Legal Med

January 2025

Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa.

The ForenSeq™ DNA Signature Prep kit has not been thoroughly tested with crude buccal swab lysates in large-scale population studies using massively parallel sequencing (MPS). Commonly used lysis buffers for swabs intending to undergo direct polymerase chain reaction (PCR) are SwabSolution™ and STR GO! Lysis Buffers, and these have been successfully used to generate population data using capillary electrophoresis (CE) systems. In this study, we investigated the performance and optimisation of SwabSolution™ and STR GO! lysates with the ForenSeq™ DNA Signature Prep workflow and addressed the challenge of failed MPS profiles in initial trials.

View Article and Find Full Text PDF

Objective: The study aimed to evaluate the epidemiological, clinical, and molecular data of mucopolysaccharidosis type II (MPS II) patients and their outcomes using the national registry of patients in the Russian Federation (RF). Materials and Methods: In the retrospective cohort study, the authors included data from the Russian national registry of MPS II. Results: The prevalence of MPS II in RF is 0.

View Article and Find Full Text PDF

Persistent neutrophilic inflammation can lead to tissue damage and chronic inflammation, contributing to non-healing wounds. The resolution phase of neutrophilic inflammation is critical to preventing tissue damage, as observed in diseases characterized by influx of neutrophils such as atherosclerosis and non-healing wounds. Animal models have provided insight into resolution of neutrophilic inflammation via efferocytosis and reverse migration (rM); however, species-specific differences and complexity of innate immune responses make translation to humans challenging.

View Article and Find Full Text PDF

The bifunctional mechanism, involving multiactive compositions to simultaneously dissociate water molecules and optimize intermediate adsorption, has been widely used in the design of catalysts to boost water electrolysis for sustainable hydrogen energy production but remains debatable due to difficulties in accurately identifying the reaction process. Here, we proposed the concept of well-defined Lewis pairs in single-atom catalysts, with a unique acid-base nature, to comprehensively understand the exact role of multiactive compositions in an alkaline hydrogen evolution reaction. By facilely adjusting active moieties, the induced synergistic effect between Lewis pairs (M-P/S/Cr pairs, M = Ru, Ir, Pt) can significantly facilitate the cleavage of the H-OH bond and accelerate the removal of intermediates, thereby switching the rate-determining step from the Volmer step to the Heyrovsky step.

View Article and Find Full Text PDF

Effects of Relative Microplastic-Biochar Sizes and Biofilm Formation on Fragmental Microplastic Retention in Biochar Filters.

Environ Res

January 2025

Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand. Electronic address:

Microplastics (MPs) pose significant risks to aquatic life and human health. Conventional water treatment is ineffective in removing MPs, demanding alternative technologies. Biochar exhibits a potential for removing MPs through adsorption and filtration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!