Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aims to elucidate the potential targets and molecular mechanisms underlying the anticancer effects of Red fermented rice extract using molecular simulation techniques. The inhibitory effects of different elution fractions of Red fermented rice extract on A549 and MCF-7 cell proliferation were evaluated through CCK-8 assays. Liquid chromatography-mass spectrometry (LC-MS) was employed to elucidate the structural information of active components, while molecular simulation techniques aided in identifying target proteins based on small molecule structures. Protein immunoblotting was utilized to investigate the mechanisms of action of relevant targets. The study found that the petroleum ether-ethyl acetate and ethyl acetate elution fractions of Red fermented rice extract significantly inhibited A549 and MCF-7 cell proliferation, with stronger effects observed on A549 cells. LC-MS structural analysis identified 25 small molecule structures. Molecular simulations successfully revealed interaction between active elution fractions of Red fermented rice extract and the cancer-related protein FGFR1. Further investigation into the phosphorylation of FGFR1 and its downstream pathway targets PI3K/AKT demonstrated that the active elution fractions exerted their anticancer activity by inhibiting the phosphorylation of FGFR1, PI3K, and AKT proteins. This comprehensive study, integrating CCK-8 assays, LC-MS, molecular simulation techniques, and protein immunoblotting, provides a deep understanding of the anticancer mechanisms of Red fermented rice extract, guiding its further development and clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fitote.2024.106079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!