Deletion of the alr gene in Brucella suis S2 attenuates virulence by enhancing TLR4-NF-κB-NLRP3- mediated host inflammatory responses.

Int Immunopharmacol

College of Veterinary Medicine, Northwest A &F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China. Electronic address:

Published: August 2024

AI Article Synopsis

  • - Brucella, an intracellular bacterium, mainly relies on replicating inside host cells, and a mutant strain lacking the alr gene showed heightened immune responses in mice.
  • - Immunized mice exhibited increased spleen weight and elevated serum IgG levels, while the bacterial load in the spleen decreased, indicating a stronger immune reaction.
  • - The Δalr mutant enhanced inflammation and immune activation in macrophages through the TLR4-NF-κB-NLRP3 signaling pathway, leading to reduced Brucella survival and showing lower toxicity combined with stronger immunogenicity.

Article Abstract

Brucella is an intracellular parasitic bacterium lacking typical virulence factors, and its pathogenicity primarily relies on replication within host cells. In this study, we observed a significant increase in spleen weight in mice immunized with a Brucella strain deleted of the gene for alanine racemase (Alr), the enzyme responsible for alanine racemization (Δalr). However, the bacterial load in the spleen markedly decreased in the mutant strain. Concurrently, the ratio of white pulp to red pulp in the spleen was increased, serum IgG levels were elevated, but no significant damage to other organs was observed. In addition, the inflammatory response was potentiated and the NF-κB-NLRP3 signaling pathway was activated in macrophages (RAW264.7 Cells and Bone Marrow-Derived Cells) infect ed with the Δalr mutant. Further investigation revealed that the Δalr mutant released substantial amounts of protein in a simulated intracellular environment which resulted in heightened inflammation and activation of the TLR4-NF-κB-NLRP3 pathway in macrophages. The consequent cytoplasmic exocytosis reduced intracellular Brucella survival. In summary, cytoplasmic exocytosis products resulting from infection with a Brucella strain deleted of the alr gene effectively activated the TLR4-NFκB-NLRP3 pathway, triggered a robust inflammatory response, and reduced bacterial survival within host cells. Moreover, the Δalr strain exhibits lower toxicity and stronger immunogenicity in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.112443DOI Listing

Publication Analysis

Top Keywords

alr gene
8
host cells
8
brucella strain
8
strain deleted
8
inflammatory response
8
Δalr mutant
8
cytoplasmic exocytosis
8
brucella
5
deletion alr
4
gene brucella
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!