Drug local delivery system that directly supply anti-cancer drugs to the tumor microenvironment (TME) results in excellent tumor control and minimizes side effects associated with the anti-cancer drugs. Immune checkpoint inhibitors (ICIs) have been the mainstay of cancer immunotherapy. However, the systemic administration of ICIs is accompanied by considerable immunotherapy-related toxicity. To explore whether an anti-PD-L1 antibody administered locally via a sustained-release gel-forming carrier retains its effective anticancer function while causing fewer colitis-like side effects, CT, a previously reported depot system, was used to locally deliver an anti-PD-L1 antibody together with curcumin to the TME in bladder cancer-bearing ulcerative colitis model mice. We showed that CT-mediated intratumoral coinjection of an anti-PD-L1 antibody and curcumin enabled sustained release of both the loaded anti-PD-L1 antibody and curcumin, which contributed to substantial anticancer effects with negligible side effects on the colons of the UC model mice. However, although the anti-PD-L1 antibody administered systemically synergized with the CT-mediated intratumoral delivery of curcumin in inhibiting tumour growth, colitis was significantly worsened by intraperitoneal administration of anti-PD-L1 antibody. These findings suggested that CT is a promising agent for the local delivery of anticancer drugs, as it can allow effective anticancer functions to be retained while sharply reducing the adverse side effects associated with the systemic administration of these drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.112417 | DOI Listing |
J Immunother
December 2024
Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea.
Dendritic cells (DCs) are specialized immune cells that play a crucial role in presenting antigens and activating cytotoxic T lymphocytes to combat tumors. The immune checkpoint receptor programmed cell death-1 (PD-1) can bind to its ligand programmed cell death-ligand 1 (PD-L1), which is expressed on the surface of cancer cells. This interaction suppresses T-cell activation and promotes immune tolerance.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, 530021, China.
Inducing immunogenic cell death (ICD) is a promising approach to elicit enduring antitumor immune responses. Hence, extensive efforts are being made to develop ICD inducers. Herein, a cascaded dual-atom nanozyme with Fe and Cu sites (FeCu-DA) as an efficient ICD inducer is presented.
View Article and Find Full Text PDFActa Biomater
December 2024
Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA. Electronic address:
Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Antibody-dependent cellular phagocytosis (ADCP) by monocytes and macrophages contributes significantly to the efficacy of many therapeutic monoclonal antibodies (mAbs), including anti-CD20 rituximab (RTX) targeting CD20 B-cell non-Hodgkin lymphomas (NHL). However, ADCP is constrained by various immune checkpoints, notably the anti-phagocytic CD47 molecule, necessitating strategies to overcome this resistance. We have previously shown that the IgG2 isotype of RTX induces CD20-mediated apoptosis in B-cell lymphoma cells and, when combined with RTX-IgG1 or RTX-IgG3 mAbs, can significantly enhance Fc receptor-mediated phagocytosis.
View Article and Find Full Text PDFExpert Opin Biol Ther
December 2024
Department of Lymphoma/National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
Introduction: Relapsed or refractory extranodal natural killer/T-cell lymphoma (R/R ENKTL) is a rare and aggressive subtype arising from natural killer or cytotoxic T-cells, predominantly affecting the nasal cavity and paranasal sinuses, lacking a standardized therapeutic approach. Sugemalimab, a fully human, full-length anti-PD-L1 immunoglobulin G4 (IgG4) monoclonal antibody (mAb), has been investigated in a Single-Arm, Multicenter, Phase II Study (GEMSTONE-201). The results demonstrated significant efficacy, favorable tolerability, and manageable adverse reactions of sugemalimab in R/R ENKTL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!