Nano/micromotors hold immense potential for revolutionizing drug delivery and detection systems, especially in the realm of cancer diagnosis and treatment, owing to their distinctive features, including precise propulsion, maneuverability, and meticulously designed surface modifications. In this study, we explore the capabilities of modified and magnetically driven micromotors as active drug delivery systems within 2D and 3D cell culture environments and cancer diagnosis. We synthesized gold (Au) and iron-nickel (Fe-Ni) metallic-based magnetic micromotors (Au:Fe-Ni MMs) through electrochemical methods, equipping them with functionalities for controlled doxorubicin (DOX) release and cancer cell recognition. In 2D and spheroids of MCF-7 adenocarcinoma cells, the Au segment of these micromotors was utilized to help DOX loading through poly(sodium-4-styrenesulfonate) (PSS) functionalization, and the attachment of antiHER2 antibodies for specific recognition. This innovative approach enabled controlled drug release within the cancerous microenvironment, coupled with magnetic (Fe-Ni) propulsion for biocompatible drug delivery to MCF-7 cells. Furthermore, antiHER2 immobilized Au:Fe-Ni MMs effectively interacted with receptors, capitalizing on the overexpression of HER2 antigens on MCF-7 cells. Encouraging outcomes were observed, particularly in spheroid models, underscoring the remarkable potential of these multifunctional micromotors for advancing intelligent drug delivery methodologies and diagnostic purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.114019 | DOI Listing |
Future Med Chem
January 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China.
Front Biosci (Landmark Ed)
January 2025
Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, Henan, China.
Front Biosci (Landmark Ed)
January 2025
Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China.
Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.
View Article and Find Full Text PDFChemistry
January 2025
Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, CHINA.
Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.
View Article and Find Full Text PDFViruses
January 2025
Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.
Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!