Self-assembled skin-like metamaterials for dual-band camouflage.

Sci Adv

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Published: June 2024

Skin-like soft optical metamaterials with broadband modulation have been long pursued for practical applications, such as cloaking and camouflage. Here, we propose a skin-like metamaterial for dual-band camouflage based on unique Au nanoparticles assembled hollow pillars (NPAHP), which are implemented by the bottom-up template-assisted self-assembly processes. This dual-band camouflage realizes simultaneously high visible absorptivity (~0.947) and low infrared emissivity (~0.074/0.045 for mid-/long-wavelength infrared bands), ideal for visible and infrared dual-band camouflage at night or in outer space. In addition, this self-assembled metamaterial, with a micrometer thickness and periodic through-holes, demonstrates superior skin-like attachability and permeability, allowing close attachment to a wide range of surfaces including the human body. Last but not least, benefiting from the extremely low infrared emissivity, the skin-like metamaterial exhibits excellent high-temperature camouflage performance, with radiation temperature reduction from 678 to 353 kelvin. This work provides a new paradigm for skin-like metamaterials with flexible multiband modulation for multiple application scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186495PMC
http://dx.doi.org/10.1126/sciadv.adl1896DOI Listing

Publication Analysis

Top Keywords

dual-band camouflage
16
skin-like metamaterials
8
skin-like metamaterial
8
low infrared
8
infrared emissivity
8
camouflage
6
skin-like
5
self-assembled skin-like
4
dual-band
4
metamaterials dual-band
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!