Standing dead trees (snags) are recognized for their influence on methane (CH) cycling in coastal wetlands, yet the biogeochemical processes that control the magnitude and direction of fluxes across the snag-atmosphere interface are not fully elucidated. Herein, we analyzed microbial communities and fluxes at one height from ten snags in a ghost forest wetland. Snag-atmosphere CH fluxes were highly variable (- 0.11-0.51 mg CH m h). CH production was measured in three out of ten snags; whereas, CH consumption was measured in two out of ten snags. Potential CH production and oxidation in one core from each snag was assayed in vitro. A single core produced CH under anoxic and oxic conditions, at measured rates of 0.7 and 0.6 ng CH g h, respectively. Four cores oxidized CH under oxic conditions, with an average rate of - 1.13 ± 0.31 ng CH g h. Illumina sequencing of the V3/V4 region of the 16S rRNA gene sequence revealed diverse microbial communities and indicated oxidative decomposition of deadwood. Methanogens were present in 20% of the snags, with a mean relative abundance of < 0.0001%. Methanotrophs were identified in all snags, with a mean relative abundance of 2% and represented the sole CH-cycling communities in 80% of the snags. These data indicate potential for microbial attenuation of CH emissions across the snag-atmosphere interface in ghost forests. A better understanding of the environmental drivers of snag-associated microbial communities is necessary to forecast the response of CH cycling in coastal ghost forest wetlands to a shifting coastal landscape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186919PMC
http://dx.doi.org/10.1007/s00284-024-03767-wDOI Listing

Publication Analysis

Top Keywords

microbial communities
12
ten snags
12
standing dead
8
dead trees
8
oxic conditions
8
snags
5
communities standing
4
trees ghost
4
ghost forests
4
forests aerobic
4

Similar Publications

The role of the early-life gut microbiome in childhood asthma.

Gut Microbes

December 2025

Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark.

Asthma is a chronic disease affecting millions of children worldwide, and in severe cases requires hospitalization. The etiology of asthma is multifactorial, caused by both genetic and environmental factors. In recent years, the role of the early-life gut microbiome in relation to asthma has become apparent, supported by an increasing number of population studies, research, and intervention trials.

View Article and Find Full Text PDF

Earthworms are keystone animals stimulating litter decomposition and nutrient cycling. However, earthworms comprise diverse species which live in different soil layers and consume different types of food. Microorganisms in the gut of earthworms are likely to contribute significantly to their ability to digest organic matter, but this may vary among earthworm species.

View Article and Find Full Text PDF

Gut microbiota, metabolites, and cytokines in relation to the risk of prostate cancer in the Asian population.

Front Oncol

January 2025

Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Purpose: Studies have shown that gut microbiota is involved in the tumorigenesis and development of prostate cancer. We aimed to perform a comprehensive analysis of causal associations of gut microbiota, metabolites, and cytokines with prostate cancer in the Asian population.

Patients And Methods: Genome-wide association study (GWAS) summary datasets were collected from the public databases.

View Article and Find Full Text PDF

Background: Human papillomavirus (HPV) is a viral infection, and its acquisition and persistence are significantly influenced by the vaginal microbiota. Understanding and comparing the vaginal microbiome of HPV infected women in Andaman and Nicobar Islands is crucial.

Methods: The study involved collecting vaginal swabs and extracting DNA using the QIAamp DNA Minikit.

View Article and Find Full Text PDF

Glycinin-induced foodborne enteritis is a significant obstacle that hinders the healthy development of the aquatic industry. Glycinin causes growth retardation and intestinal damage in hybrid yellow catfish ( ♀ × ♂), but its immune mechanisms are largely unknown. In the current study, five experimental diets containing 0% (CK), 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!