Deep learning for osteoporosis screening using an anteroposterior hip radiograph image.

Eur J Orthop Surg Traumatol

Department of Radiology, Faculty of Medicine, Khon Kaen University, 123 Mittraparp Rd, Khon Kaen, Thailand.

Published: August 2024

Purpose: Osteoporosis is a common bone disorder characterized by decreased bone mineral density (BMD) and increased bone fragility, which can lead to fractures and eventually cause morbidity and mortality. It is of great concern that the one-year mortality rate for osteoporotic hip fractures could be as high as 22%, regardless of the treatment. Currently, BMD measurement is the standard method for osteoporosis diagnosis, but it is costly and requires special equipment. While a plain radiograph can be obtained more simply and inexpensively, it is not used for diagnosis. Deep learning technologies had been applied to various medical contexts, yet few to osteoporosis unless they were trained on the advanced investigative images, such as computed tomography. The purpose of this study was to develop a deep learning model using the anteroposterior hip radiograph images and measure its diagnostic accuracy for osteoporosis.

Methods: We retrospectively collected all anteroposterior hip radiograph images of patients from 2013 to 2021 at a tertiary care hospital. The BMD measurements of the included patients were reviewed, and the radiograph images that had a time interval of more than two years from the measurements were excluded. All images were randomized using a computer-generated unequal allocation into two datasets, i.e., 80% of images were used for the training dataset and the remaining 20% for the test dataset. The T score of BMD obtained from the ipsilateral femoral neck of the same patient closest to the date of the performed radiograph was chosen. The T score cutoff value of - 2.5 was used to diagnose osteoporosis. Five deep learning models were trained on the training dataset, and their diagnostic performances were evaluated using the test dataset. Finally, the best model was determined by the area under the curves (AUC).

Results: A total of 363 anteroposterior hip radiograph images were identified. The average time interval between the performed radiograph and the BMD measurement was 6.6 months. Two-hundred-thirteen images were labeled as non-osteoporosis (T score >  - 2.5), and the other 150 images as osteoporosis (T score ≤  - 2.5). The best-selected deep learning model achieved an AUC of 0.91 and accuracy of 0.82.

Conclusions: This study demonstrates the potential of deep learning for osteoporosis screening using anteroposterior hip radiographs. The results suggest that the deep learning model might potentially be used as a screening tool to find patients at risk for osteoporosis to perform further BMD measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00590-024-04032-3DOI Listing

Publication Analysis

Top Keywords

deep learning
28
anteroposterior hip
20
hip radiograph
16
radiograph images
16
bmd measurement
12
learning model
12
images
9
osteoporosis
8
learning osteoporosis
8
osteoporosis screening
8

Similar Publications

Deep learning-based automated diagnosis of temporomandibular joint anterior disc displacement and its clinical application.

Front Physiol

December 2024

Department of Oral & Maxillofacial Surgery, Shenzhen Stomatology Hospital, Affiliated to Shenzhen University, Shenzhen, Guangdong Province, China.

Introduction: This study aimed to develop a deep learning-based method for interpreting magnetic resonance imaging (MRI) scans of temporomandibular joint (TMJ) anterior disc displacement (ADD) and to formulate an automated diagnostic system for clinical practice.

Methods: The deep learning models were utilized to identify regions of interest (ROI), segment TMJ structures including the articular disc, condyle, glenoid fossa, and articular tubercle, and classify TMJ ADD. The models employed Grad-CAM heatmaps and segmentation annotation diagrams for visual diagnostic predictions and were deployed for clinical application.

View Article and Find Full Text PDF

Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer.

Oncol Res

December 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Background: Triple-negative breast cancer (TNBC), characterized by its lack of traditional hormone receptors and HER2, presents a significant challenge in oncology due to its poor response to conventional therapies. Autophagy is an important process for maintaining cellular homeostasis, and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors. In contrast to targeting protein activity, intervention with protein-protein interaction (PPI) can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.

View Article and Find Full Text PDF

Advancing Regulatory Genomics With Machine Learning.

Bioinform Biol Insights

December 2024

LIRMM, Univ Montpellier, CNRS, Montpellier, France.

In recent years, several machine learning (ML) approaches have been proposed to predict gene expression signal and chromatin features from the DNA sequence alone. These models are often used to deduce and, to some extent, assess putative new biological insights about gene regulation, and they have led to very interesting advances in regulatory genomics. This article reviews a selection of these methods, ranging from linear models to random forests, kernel methods, and more advanced deep learning models.

View Article and Find Full Text PDF

Background: The aim of this study is to develop deep learning models based on F-fluorodeoxyglucose positron emission tomography/computed tomographic (F-FDG PET/CT) images for predicting individual epidermal growth factor receptor () mutation status in lung adenocarcinoma (LUAD).

Methods: We enrolled 430 patients with non-small-cell lung cancer from two institutions in this study. The advanced Inception V3 model to predict EGFR mutations based on PET/CT images and developed CT, PET, and PET + CT models was used.

View Article and Find Full Text PDF

Objectives: The accurate assessment of lymph node metastasis (LNM) can facilitate clinical decision-making on radiotherapy or radical hysterectomy (RH) in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC). This study aims to develop a deep learning radiomics nomogram (DLRN) to preoperatively evaluate LNM in cervical AC/ASC.

Materials And Methods: A total of 652 patients from a multicenter were enrolled and randomly allocated into primary, internal, and external validation cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!