Developing synthetic strategies for smart materials for the adsorption and separation of toxic chemicals is of great importance. Metal-organic frameworks (MOFs) have been proven to be outstanding adsorbent materials that possess excellent pollutant removal performances in wastewater treatment, including dye recycling. In this work, a neutral Cd(II) based 2D framework with a dual ligand strategy involving -OH functionalized 5-hydroxyisophthalic acid (5-OH-HIPA) and the amide decorated Schiff base ligand ()-'-(pyridin-4-ylmethylene)isonicotinohydrazide (L) has been synthesized by different synthetic routes and characterized by various analytical methods. Thus, crystals of {[Cd(5-OH-IPA)(L)]·CHOH} synthesized diffusion (ADES-7D) and the phase pure bulk product synthesized by conventional reflux (ADES-7C) and the mechanochemical grinding method (ADES-7M) have been established using PXRD data of the respective product showing identical simulated SXRD data to those of ADES-7D. The mechanochemically synthesized ADES-7M possesses a better surface area and CO adsorption capability compared to ADES-7C, which is also supported by electron microscopy and particle size measurements. Furthermore, ADES-7 can be used as an efficient adsorbent material for the reversible, selective adsorption (42-99%) and separation of the cationic dyes malachite green (MG), methyl violet (MV), methylene blue (MB), and rhodamine B (RhB) from the mixture of cationic/anionic dyes (methyl orange (MO) and bromocresol green (BCG)) in the aqueous phase. Specifically, ADES-7M possesses better dye capture capability compared to ADES-7C, even in the case of the bigger dye RhB with adsorption differences of 2.38 to 1.01 mg g, respectively. The dye adsorption kinetics follows pseudo-second-order kinetics, and the dye adsorption isotherm fits well with the Langmuir/Freundlich adsorption isotherm models. The probable mechanism of adsorption involving the supramolecular interaction between the host MOF and the guest dye has also been proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt00661e | DOI Listing |
Inorg Chem
January 2025
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China.
Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting CsCuI (emission at 440 nm) and yellow-emitting CsCuI (emission at 570 nm) phosphors through polarity modulation and control of grinding duration.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Pharmacy, Forman Christian College, Lahore, 54600, Pakistan.
Introduction: Non-steroidal anti-inflammatory drugs are associated with severe gastrointestinal irritation upon prolonged use, largely due to their carboxylic (-- COOH) functional group.
Aim: To address this issue, we aimed to synthesize diclofenac conjugates with glucosamine and chitosan, converting the -COOH group into an amide (-CONH-) via a mechanochemical, environmentally friendly method.
Method: In this study, diclofenac acid was first converted to its acid chloride using thionyl chloride under mechanochemical conditions and subsequently reacted with glucosamine base and chitosan.
J Mater Chem A Mater
December 2024
Faculty of Applied Sciences, Delft University of Technology 2629 JB Delft The Netherlands
Solid-state batteries currently receive ample attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. One key remaining challenge is identifying solid electrolytes that combine high ionic conductivity with stability in contact with the highly reducing potentials of next-generation anodes. Fully reduced electrolytes, based on irreducible anions, offer a promising solution by avoiding electrolyte decomposition altogether.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
The design of environmentally friendly methods for synthesizing molecular receptors is an expanding area within applied organic chemistry. This work systematically summarizes advances in the mechanochemical synthesis of molecular chemoreceptors. It discusses key achievements related to the synthesis of chemoreceptors containing azine, Schiff base, thiosemicarbazone, hydrazone, rhodamine 6G, imide, or amide moieties.
View Article and Find Full Text PDFInorg Chem
December 2024
Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
2,5-Dihydroxyterephthalic acid (H) is well-known for its use in the construction of functional metal-organic frameworks (MOFs). Among them, simple coordination polymers (CPs), such as lithium and sodium coordination polymers with H, have been used successfully to synthesize electrically conductive MOFs and have also demonstrated great potential as positive or negative electrode materials on their own. However, there has been little exploration of the structure and physicochemical properties of these and other alkali complexes of H.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!