In vitro Models for Predicting Bioadhesion Fracture Strength to Ex Vivo Animal Buccal Tissue.

Small

Department of Chemical and Biotechnology Engineering, Ariel University, Kyriat-ha-Mada 3, Ariel, 4070000, Israel.

Published: October 2024

Commitment to the 3Rs principle (Replacement, Reduction, and Refinement) led to the development of a cell-based system to measure buccal bioadhesion in vitro and replace the use of porcine buccal and esophageal tissues (PBT and PET, respectively). Additionally, the aim is to bridge the gap in knowledge regarding the bioadhesion properties of PBT and PET. The in vitro models are based on the human buccal epithelial cell line-TR146 without ("Model I") or with ("Model II") 5% (w/v) mucous layer. The in vitro setup also provides a method to evaluate the bioadhesion between two soft materials. Standard bioadhesive hydrogels (alginate, chitosan, and gelatin) are used to test and compare the results from the in vitro models to the ex vivo tissues. The ex vivo and in vitro models show increased bioadhesion as the applied force and contact time increases. Furthermore, Model I exhibits bioadhesion values-of alginate, chitosan, and gelatin-comparable to those obtained with PBT. It is also found that contact time and applied force similarly affect PBT and PET bioadhesion, while PET exhibits greater values. In conclusion, Model I can replace PBT for measuring bioadhesion and be incorporated into the experimental design of bioadhesive DDS, thus minimizing animal tissue usage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202310363DOI Listing

Publication Analysis

Top Keywords

vitro models
16
pbt pet
12
bioadhesion
8
alginate chitosan
8
applied force
8
contact time
8
vitro
6
pbt
5
models predicting
4
predicting bioadhesion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!