Tough and elastic hydrogels based on robust hydrophobicity-assisted metal ion coordination for flexible wearable devices.

J Mater Chem B

Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.

Published: July 2024

Flexible wearable sensors that combine excellent flexibility, high elasticity, sensing capabilities, and outstanding biocompatibility are gaining increasing attention. In this study, we successfully develop a robust and elastic hydrogel-based flexible wearable sensor by modulating molecular structures combined with metal ion coordination. We leverage three -acryloyl amino acid monomers, including -acryloyl glycine (AG), -acryloyl alanine (AA), and -acryloyl valine (AV) with different hydrophobic groups adjacent to the carboxyl group, to copolymerize with acrylamide (AM) in the presence of Zr for hydrogel preparation in one step (P(AM-AG/AA/AV)-Zr hydrogels). Our investigation reveals that the P(AM-AV)-Zr hydrogel with the most hydrophobic side group demonstrates superior mechanical properties (1.1 MPa tensile stress, 3566 kJ m toughness and 1.3 kJ m fracture energy) and resilience to multiple tensile (30% strain, 500 cycles) and compression cycling (50% strain, 500 cycles). Moreover, the P(AM-AV)-Zr hydrogel exhibits good biocompatibility and high conductivity (1.1 S m) and responsivity (GF = 16.21), and is proved to be suitable as a flexible wearable sensor for comprehensive human activity monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4tb00933aDOI Listing

Publication Analysis

Top Keywords

flexible wearable
16
metal ion
8
ion coordination
8
wearable sensor
8
pam-av-zr hydrogel
8
strain 500
8
500 cycles
8
tough elastic
4
elastic hydrogels
4
hydrogels based
4

Similar Publications

High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions.

Adv Sci (Weinh)

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.

View Article and Find Full Text PDF

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Bioinspired Conductivity-Enhanced, Self-Healing, and Renewable Silk Fibroin Hydrogel for Wearable Sensors with High Sensitivity.

ACS Appl Mater Interfaces

January 2025

Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China.

The development of silk fibroin-based hydrogels with excellent biocompatibility, aqueous processability, and facile controllability in structure is indeed an exciting advancement for biological research and strain sensor applications. However, silk fibroin-based hydrogel strain sensors that combine high conductivity, high stretchability, reusability, and high selectivity are still desired. Herein, we report a simple method for preparing double-network hydrogels including silk fibroin and poly(acrylic acid) sodium-polyacrylate (PAA-PAAS) networks.

View Article and Find Full Text PDF

The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform.

View Article and Find Full Text PDF

Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!