This study presents a rigorous mechanical characterisation investigation on milk chocolate with varying porosities, at different temperatures and strain rate levels. Uniaxial compression tests at temperatures varying from 20 °C to 30 °C were performed to measure the bulk properties of chocolate as a function of porosity and temperature. Fracture experiments were also conducted to compute the fracture energy at temperature levels between 20 °C and 30 °C for all tested samples. Additionally, rheological experiments are conducted to compute the viscosity of the different chocolates at 37 °C. This combined experimental analysis of solid mechanics, fracture mechanics, and rheology aims to define the impact of temperature and chocolate's phase change from solid to liquid on its mechanical properties. Moreover, the impact of micro-aeration on the relationship between material properties and temperature is discussed. The results demonstrate a significant impact of both temperature and micro-aeration on the chocolate's material properties; fracture stresses decrease with micro-aeration due to the presence of micro-pores creating weak links in the chocolate matrix, the critical strain energy release rate decreases with micro-aeration at temperatures up to 25 °C and increases at temperatures above 30 °C. Finally, the viscosity at 37 °C increases with increasing porosity due to the obstruction of the flow by micro-pores acting as "solid" particles. The results highlight how the impact of micro-aeration on the material properties of chocolate alters as the testing temperature rises and the material changes phase. The relationships between the micro-aeration and material properties and the dependence of temperature on the different mechanical properties are used to explain the difference in textural attributes as obtained from temporal dominance sensation tests. This study seeks to contribute valuable insights into the field of chocolate technology, emphasizing the need for a combined engineering approach to understand the structural breakdown of chocolate during oral processing as mechanisms such as chewing, melting, mixing and shearing occur.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm00264dDOI Listing

Publication Analysis

Top Keywords

material properties
16
impact micro-aeration
12
fracture mechanics
8
mechanics rheology
8
chocolate oral
8
oral processing
8
°c
8
°c °c
8
properties chocolate
8
experiments conducted
8

Similar Publications

Background: This study aimed to assess the histological and radiographic effects of sodium hexametaphosphate (SHMP) as a direct pulp capping (DPC) agent in immature permanent dog premolars.

Methods: A split-mouth design was employed with three healthy 4-month-old Mongrel dogs, each having 36 premolars. The premolars were randomly assigned to either SHMP or MTA.

View Article and Find Full Text PDF

Electronic circular dichroism (ECD) spectra contain key information about molecular chirality by discriminating the absolute configurations of chiral molecules, which is crucial in asymmetric organic synthesis and the drug industry. However, existing predictive approaches lack the consideration of ECD spectra owing to the data scarcity and the limited interpretability to achieve trustworthy prediction. Here we establish a large-scale dataset for chiral molecular ECD spectra and propose ECDFormer for accurate and interpretable ECD spectrum prediction.

View Article and Find Full Text PDF

Amino acid modified copper-based metal organic polyhedral with higher peroxidase activity for potassium guaiacol sulfonate detection.

Sci Rep

January 2025

School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming, China.

It has been reported some nanozymes could be used as a substitute for natural enzyme to detect HO to some extent. However, the low catalytic effect of these materials limited their further application fields. Hence, to increase the catalytic activity of nanozymes was a hot research topic and many methods have been reported.

View Article and Find Full Text PDF

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF

Long afterglow hybrid nanoplatform for integrated NIR-Ⅱ imaging diagnosis and triple-synergistic treatment of choroidal melanoma.

Talanta

December 2024

The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

The key to the treatment of choroidal melanoma (CM) is to improve diagnostic efficiency and find a high-performance treatment to replace the traditional treatment of radiotherapy and enucleation. In this paper, for the first time, long afterglow luminescence material was applied to the integrated diagnosis and treatment of eyes, with its unique advantages in photoluminescence and afterglow luminescence to solve the bottleneck problem of real-time irradiation required for photothermal and photodynamic therapy (PTT and PDT). Based on the excellent photoluminescence and afterglow properties of ZnGaGeO:CrYbEr (ZGGO) nanoparticles, a nanoplatform ZGGO@Au@UiO-66@ZnPc:Dox-FA (GAUZD-FA) for NIR-Ⅱ imaging and triple-synergistic therapy (PTT, PDT and sustained-release drug) was constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!