Host-plant sex and phenology of Kunth interact to influence arthropod communities.

Ecol Evol

Departamento de Ecología y Recursos Naturales Universidad Nacional Autónoma de México Ciudad de México Mexico.

Published: June 2024

Intraspecific variation in plants is expected to have profound impacts on the arthropod communities associated with them. Because sexual dimorphism in plants is expected to provide consistent variation among individuals of the same species, researchers have often studied the effect it has on associated arthropods. Nevertheless, most studies have focused on the effect of sexual dimorphism in a single or a few herbivores, thus overlooking the potential effects on the whole arthropod community. Our main objective was to evaluate effects of 's plant-sex on its associated arthropod community. We surveyed 13 pairs of male and female plants every 2 months during a year (June 2010 to April 2011). Every sampling date, we measured plant traits (water content and leaf thickness), herbivory, and the arthropod community. We did not find differences in herbivory between plant sex or through time. However, we found differences in water content through time, with leaf water-content matching the environmental seasonality. For arthropod richness, we found 68 morphospecies associated with female and 72 with male plants, from which 53 were shared by both sexes. We did not observe differences in morphospecies richness; however, we found sex-associated differences in the diversity of all species and differences on the diversity of the most abundant species with an interesting temporal component. During peak flowering season, male plants showed higher values on both parameters, but during the peak fructification season female plants showed the higher values on both diversity parameters. Our research exemplifies the interaction between plant-phenology and plant-sex as drivers of arthropod communities' diversity, even when plant sexual-dimorphism is inconspicuous, and highlighting the importance of accounting for seasonal variation. We stress the need of conducting more studies that test this time-dependent framework in other dioecious systems, as it has the potential to reconcile previous contrasting observations reported in the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11183185PMC
http://dx.doi.org/10.1002/ece3.11555DOI Listing

Publication Analysis

Top Keywords

arthropod community
12
arthropod communities
8
plants expected
8
sexual dimorphism
8
female plants
8
water content
8
male plants
8
differences diversity
8
plants higher
8
higher values
8

Similar Publications

Diversity of ectoparasitic bat flies (Diptera, Hippoboscoidea) in inter-Andean valleys: evaluating interactions in the largest inter-Andean basin of Colombia.

Zookeys

December 2024

Grupo de Investigación GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia Universidad de Caldas Manizales Colombia.

Article Synopsis
  • Bat flies from the Streblidae and Nycteribiidae families have evolved specialized traits to feed on bats' blood and form specific associations with different bat species.
  • The Magdalena River basin in Colombia, which supports 98 bat species, reveals a diverse and modular interaction between bats and bat flies through field studies and literature review.
  • The study demonstrates medium specialization among bat flies, highlighting competitive relationships among species and suggesting that environmental conditions influence these dynamics in bat populations.
View Article and Find Full Text PDF

Plastic pollution is a significant environmental challenge of contemporary age. Polystyrene (PS), among the most commonly used plastic polymers worldwide, is highly durable and difficult to degrade. Despite various disposal strategies, PS continues to impact biodiversity, human health, and ecosystems.

View Article and Find Full Text PDF

Aquatic-terrestrial linkages drive contrasting biodiversity patterns in tropical and temperate forests.

Proc Biol Sci

January 2025

Centre for Biodiversity and Sustainability, School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

Riparian ecosystems harbour unique biodiversity because of their close interconnections with adjacent aquatic ecosystems. Yet, how aquatic ecosystems influence terrestrial biodiversity over different spatial scales is poorly understood, particularly in the tropics. We conducted field campaigns to collect 235 terrestrial invertebrate assemblages along 150 m transects from 47 streams in both Brazil and the UK, compiling one of the largest known datasets of riparian invertebrate community composition at multiple spatial scales.

View Article and Find Full Text PDF

Arthropod-borne viral diseases are acute febrile illnesses, sometimes with chronic effects, that can be debilitating and even fatal worldwide, affecting particularly vulnerable populations. Indigenous communities face not only the burden of these acute febrile illnesses, but also the cardiovascular complications that are worsened by urbanization. A cross-sectional study was conducted in an Indigenous population in the Northeast Region of Brazil to explore the association between arboviral infections (dengue, chikungunya, and Zika) and cardiac biomarkers, including cardiotrophin 1, growth differentiation factor 15, lactate dehydrogenase B, fatty-acid-binding protein 3, myoglobin, N-terminal pro-B-type natriuretic peptide, cardiac troponin I, big endothelin 1, and creatine kinase-MB, along with clinical and anthropometric factors.

View Article and Find Full Text PDF

The Tick Microbiome: The "Other Bacterial Players" in Tick Biocontrol.

Microorganisms

November 2024

Department of Entomology, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ 85719, USA.

Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!