Objectives: Black spots (BSs) are lentiginous findings observed in the gastric body and fundus during upper gastrointestinal endoscopy and are predominantly seen in patients undergoing eradication treatment. However, the detailed patient background and exact composition are poorly understood. This study aims to clarify the clinicopathological features of BSs, examine patient demographics, and use the NanoSuit-correlative light and electron microscopy (CLEM) method combined with scanning electron microscopy-energy dispersive X-ray spectroscopy for elemental analysis.
Methods: Patients who underwent upper gastrointestinal endoscopy between 2017 and 2022 were included. Data on age, medications, blood tests, and infection status were retrospectively gathered from medical records. Univariate analysis was conducted to examine BS presence, with results then used in a multivariate model to identify associated risk factors. Additionally, pathological specimens from patients with BSs were analyzed for elemental composition using the NanoSuit-CLEM method combined with scanning electronmicroscopy-energy dispersive X-ray spectroscopy.
Results: An analysis of 6778 cases identified risk factors for BSs, including older age and using proton pump inhibitors, statins, corticosteroids, and antithrombotic drugs. Endoscopically, BSs correlated with higher gastric atrophy and lower active infection. Iron deposition at BS sites was specifically identified using NanoSuit-CLEM.
Conclusions: BSs on gastrointestinal endoscopy may indicate an absence of active inflammation. The discovery of iron deposition within BSs using the NanoSuit-CLEM method has offered new insights into the possible causative factors and advances our understanding of the etiology of BSs, bringing us closer to unraveling the underlying mechanisms of their formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182783 | PMC |
http://dx.doi.org/10.1002/deo2.398 | DOI Listing |
Free Radic Biol Med
January 2025
University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics. Electronic address:
Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.
View Article and Find Full Text PDFMicroorganisms
January 2025
Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
Recently, the ability of microbial-induced calcium carbonate precipitation (MICP) to remediate heavy metals has been widely explored. was selected to remediate heavy metal-contaminated solution and aged refuse, exploring the feasibility of bioremediation of heavy metals and analyzing the changes in heavy metal forms before and after bioremediation, as well as the mechanism of remediation. The results showed that achieved remediation rates of 95%, 84%, 97%, and 98% for Cd, Pb, Zn, and Cr (III) in contaminated solution, respectively.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Geology Institute of China Chemical Geology and Mine Bureau, Beijing 100101, China; Technology Innovation Center for Ecological Restoration Engineering in Mining Area, Ministry of Natural Resources, Beijing 100083, China.
Contaminants in the water environment of different pyrite mines have varying characteristics due to different geological origins. Sulfur isotope (δS) is an effective tool to reveal the mechanism of water environment contamination, but no investigations have yet analyzed the characteristics and environmental significance of the δS in the water environment of different pyrite mines. This study involved a field investigation of four typical pyrite mines in China (representing volcanic, skarn, sedimentary-metamorphic, and coal-deposited types) and the analysis of the hydrochemistry of aqueous samples and the δS of both pyrite and dissolved sulfates.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy.
This study introduces a sustainable approach for enhancing the fire retardancy and smoke suppression of poly(lactic acid) (PLA) composites, contributing to addressing one of the major challenges in biocomposites that limits their application in various engineering fields, as automotive and construction sectors. Flax fibers (FF) were surface functionalized with a novel organic-inorganic hybrid flame retardant (FR), offering a sustainable bioinspired approach that mitigates potential mechanical properties impairment and FR leaching, which can cause environmental concerns and reduced composite durability. The process involves a three-step coating procedure.
View Article and Find Full Text PDFPLoS One
January 2025
Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!