The development of motor control over sensory organs is a critical milestone in sensory processing, enabling active exploration and shaping of the sensory environment. However, whether the onset of sensory organ motor control directly influences the development of corresponding sensory cortices remains unknown. Here, we exploit the late onset of whisking behavior in mice to address this question in the somatosensory system. Using ex vivo electrophysiology, we discovered a transient increase in the intrinsic excitability of excitatory neurons in layer IV of the barrel cortex, which processes whisker input, precisely coinciding with the onset of active whisking at postnatal day 14 (P14). This increase in neuronal gain was specific to layer IV, independent of changes in synaptic strength, and required prior sensory experience. Strikingly, the effect was not observed in layer II/III of the barrel cortex or in the visual cortex upon eye opening, suggesting a unique interaction between the development of active sensing and the thalamocortical input layer in the somatosensory system. Predictive modeling indicated that changes in active membrane conductances alone could reliably distinguish P14 neurons in control but not whisker-deprived hemispheres. Our findings demonstrate an experience-dependent, lamina-specific refinement of neuronal excitability tightly linked to the emergence of active whisking. This transient increase in the gain of the thalamic input layer coincides with a critical period for synaptic plasticity in downstream layers, suggesting a role in facilitating cortical maturation and sensory processing. Together, our results provide evidence for a direct interaction between the development of motor control and sensory cortex, offering new insights into the experience-dependent development and refinement of sensory systems. These findings have broad implications for understanding the interplay between motor and sensory development, and how the mechanisms of perception cooperate with behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185658PMC
http://dx.doi.org/10.1101/2024.06.04.597353DOI Listing

Publication Analysis

Top Keywords

active whisking
12
input layer
12
barrel cortex
12
motor control
12
sensory
10
onset active
8
layer barrel
8
development motor
8
control sensory
8
sensory processing
8

Similar Publications

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

A central topic in neuroscience is the neural coding problem which aims to decipher how the brain signals sensory information through neural activity. Despite significant advancements in this area, the characterisation of information encoding through the precise timing of spikes in the somatosensory cortex is limited. Here, we utilised a comprehensive dataset from previous studies to identify and characterise temporal response patterns of Layer 4 neurons of the rat barrel cortex to five distinct stimuli with varying complexities: Basic, Contact, Whisking, Rough, and Smooth.

View Article and Find Full Text PDF

GlyT2-positive interneurons regulate timing and variability of information transfer in a cerebellar-behavioural loop.

J Neurosci

December 2024

School of Physiology Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK. BS8 1TD.

GlyT2-positive interneurons, Golgi and Lugaro cells, reside in the input layer of the cerebellar cortex in a key position to influence information processing. Here, we examine the contribution of GlyT2-positive interneurons to network dynamics in Crus 1 of mouse lateral cerebellar cortex during free whisking. We recorded neuronal population activity using NeuroPixels probes before and after chemogenetic downregulation of GlyT2-positive interneurons in male and female mice.

View Article and Find Full Text PDF
Article Synopsis
  • Each sensory modality has specific primary and secondary thalamic nuclei, with primary ones clearly relaying sensory information, while the function of secondary nuclei remains less understood.
  • Researchers trained mice to focus on one sensory input (touch or vision) while ignoring the other, recording neuron activity in the secondary somatosensory thalamus (POm) and secondary visual thalamus (LP).
  • Findings revealed that POm's activation pattern changed based on the trained focus—showing robust activation to touch when focusing on it and to visual stimuli when trained for vision—indicating behavioral training alters how secondary thalamic nuclei respond to stimuli.
View Article and Find Full Text PDF

Introduction: As emerging technologies enable measurement of precise details of the activity within microcircuits at ever-increasing scales, there is a growing need to identify the salient features and patterns within the neural populations that represent physiologically and behaviorally relevant aspects of the network. Accumulating evidence from recordings of large neural populations suggests that neural population activity frequently exhibits relatively low-dimensional structure, with a small number of variables explaining a substantial fraction of the structure of the activity. While such structure has been observed across the brain, it is not known how reduced-dimension representations of neural population activity relate to classical metrics of "brain state," typically described in terms of fluctuations in the local field potential (LFP), single-cell activity, and behavioral metrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!