A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transfer learning predicts species-specific drug interactions in emerging pathogens. | LitMetric

Machine learning (ML) algorithms are necessary to efficiently identify potent drug combinations within a large candidate space to combat drug resistance. However, existing ML approaches cannot be applied to emerging and under-studied pathogens with limited training data. To address this, we developed a transfer learning and crowdsourcing framework (TACTIC) to train ML models on data from multiple bacteria. TACTIC was built using 2,965 drug interactions from 12 bacterial strains and outperformed traditional ML models in predicting drug interaction outcomes for species that lack training data. Top TACTIC model features revealed genetic and metabolic factors that influence cross-species and species-specific drug interaction outcomes. Upon analyzing ~600,000 predicted drug interactions across 9 metabolic environments and 18 bacterial strains, we identified a small set of drug interactions that are selectively synergistic against Gram-negative (e.g., ) and non-tuberculous mycobacteria (NTM) pathogens. We experimentally validated synergistic drug combinations containing clarithromycin, ampicillin, and mecillinam against , an emerging pathogen with growing levels of antibiotic resistance. Lastly, we leveraged TACTIC to propose selectively synergistic drug combinations to treat bacterial eye infections (endophthalmitis).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185605PMC
http://dx.doi.org/10.1101/2024.06.04.597386DOI Listing

Publication Analysis

Top Keywords

drug interactions
16
drug combinations
12
drug
10
transfer learning
8
species-specific drug
8
training data
8
bacterial strains
8
drug interaction
8
interaction outcomes
8
selectively synergistic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!