A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing in vitro spherulation cues in the fungal pathogen . | LitMetric

. are part of a group of thermally dimorphic fungal pathogens, which grow as filamentous cells (hyphae) in the soil and transform to a different morphology upon inhalation into the host. The host form, the spherule, is unique and highly under characterized due to both technical and biocontainment challenges. Each spherule arises from an environmental spore (arthroconidium), matures, and develops hundreds of internal endospores, which are released from the spherule upon rupture. Each endospore can then go on to form another spherule in a cycle called spherulation. One of the foremost technical challenges has been reliably growing spherules in culture without the formation of contaminating hyphae, and consistently inducing endospore release from spherules. Here, we present optimization of in vitro spherule growth and endospore release, by closely controlling starting cell density in the culture, using freshly-harvested arthroconidia, and decreasing the concentration of multiple salts in spherulation media. We developed a minimal media to test spherule growth on various carbon and nitrogen sources. We defined a critical role for the dispersant Tamol in both early spherule formation and prevention of the accumulation of a visible film around spherules. Finally, we examined how the conditions under which arthroconidia are generated influence their transcriptome and subsequent development into spherules, demonstrating that this is an important variable to control when designing spherulation experiments. Together, our data reveal multiple strategies to optimize in vitro spherulation growth, enabling characterization of this virulence-relevant morphology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185734PMC
http://dx.doi.org/10.1101/2024.06.06.597856DOI Listing

Publication Analysis

Top Keywords

vitro spherulation
8
form spherule
8
endospore release
8
spherule growth
8
spherule
7
spherulation
5
optimizing vitro
4
spherulation cues
4
cues fungal
4
fungal pathogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!