A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs. Moreover, proton NMR titration experiments demonstrate that INPs regardless of alkyl chain length are specific for binding copper instead of zinc. These results suggest that isonitrilases may act as gatekeepers in modulating the observed biological distribution of INP structures and this distribution may be primarily related to differing metal transport requirements among the producing strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185824PMC
http://dx.doi.org/10.1021/acscatal.4c00645DOI Listing

Publication Analysis

Top Keywords

isonitrile-containing peptides
8
versus streptomyces
8
metal transport
8
variation biosynthesis
4
biosynthesis metal-binding
4
metal-binding properties
4
properties isonitrile-containing
4
peptides produced
4
produced mycobacteria
4
mycobacteria versus
4

Similar Publications

A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs.

View Article and Find Full Text PDF

Isonitrile-Proline - A Versatile Handle for the Chemoselective Derivatization of Collagen Peptides.

Chemistry

November 2023

Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.

Functional groups that allow for chemoselective and bioorthogonal derivatization are valuable tools for the labelling of peptides and proteins. The isonitrile is such a group but synthetic methods for its incorporation into peptides by solid-phase peptide synthesis are not known. Here, we introduce (4S)- and (4R)-isonitrileproline (Inp) as building blocks for solid-phase peptide synthesis.

View Article and Find Full Text PDF

() endures a combination of metal scarcity and toxicity throughout the human infection cycle, contributing to complex clinical manifestations. Pathogens counteract this paradoxical dysmetallostasis by producing specialized metal trafficking systems. Capture of extracellular metal by siderophores is a widely accepted mode of iron acquisition, and iron-chelating siderophores, mycobactin, have been known since 1965.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!