Tuberculosis (TB), caused by ( . ), remains one of the leading causes of fatal infectious diseases worldwide. The only licensed vaccine, Bacillus Calmette-Guérin (BCG), has variable efficacy against TB in adults. Insufficiency of immune cell function diminishes the protective effects of the BCG vaccine. It is critical to clarify the mechanism underlying the antimycobacterial immune response during BCG vaccination. Macrophage mannose receptor (MR) is important for enhancing the uptake and processing of glycoconjugated antigens from pathogens for presentation to T cells, but the roles of macrophage MR in the BCG-induced immune response against . are not yet clear. Here, we discover that macrophage MR deficiency impairs the antimycobacterial immune response in BCG-vaccinated mice. Mechanistically, macrophage MR triggers JAK-STAT1 signaling, which promotes antigen presentation via upregulated MHC-II and induces IL-12 production by macrophages, contributing to CD4 T cell activation and IFN-γ production. MR deficiency in macrophages reduces the vaccine efficacy of BCG and increases susceptibility to . H37Ra challenge in mice. Our results suggest that MR is critical for macrophage antigen presentation and the antimycobacterial immune response to BCG vaccination and offer valuable guidance for the preventive strategy of BCG immunization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399420 | PMC |
http://dx.doi.org/10.3724/abbs.2024100 | DOI Listing |
Gynecol Oncol
January 2025
GOG Foundation, Florida Cancer Specialists and Research Institute, West Palm Beach, FL 33401, United States of America. Electronic address:
Objective: Therapeutic interventions for epithelial ovarian cancer (EOC) have increased greatly over the last decade but improvements outside of biomarker selected therapies have been limited. There remains a pressing need for more effective treatment options that can prolong survival and enhance the quality of life of patients with EOC. In contrast to the significant benefits of immunotherapy with immune checkpoint inhibitors (CPI) seen in many solid tumors, initial experience in EOC suggests limited efficacy of CPIs monotherapy.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China.
() commonly induces refractory infection due to its multidrug-resistant nature. To date, there have been no reports on the application of phage treatment for infection. This study was conducted to explore the feasibility of phage application in treating refractory infection by collaborating with a 59-year-old male patient with a pulmonary infection of multidrug-resistant Our experiments included three domains: ) selection of the appropriate phage, ) verification of the efficacy and safety of the selected phage, ) confirmation of phage-bacteria interactions.
View Article and Find Full Text PDFPulmonology
December 2025
Laboratory of Experimental Therapeutics, LIM-20, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.
Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFJ Med Virol
January 2025
Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!