AI Article Synopsis

  • - Formaldehyde (FA) is a harmful toxin linked to cancer and aging, with genetic mutations in detoxifying enzymes leading to its accumulation and severe health consequences in conditions like AMeD syndrome.
  • - The study examined how various DNA repair systems in *C. elegans* respond to excessive FA, identifying three distinct repair mechanisms involved in managing FA-induced DNA damage throughout development and reproduction.
  • - Results indicate that the Cockayne syndrome B (CSB) factor plays a key role in resolving FA-related DNA damage, and the antioxidant N-acetyl-l-cysteine (NAC) could offer a therapeutic approach to mitigate FA's harmful effects.

Article Abstract

Formaldehyde (FA) is a recognized environmental and metabolic toxin implicated in cancer development and aging. Inherited mutations in the FA-detoxifying enzymes ADH5 and ALDH2 genes lead to FA overload in the severe multisystem AMeD syndrome. FA accumulation causes genome damage including DNA-protein-, inter- and intra-strand crosslinks and oxidative lesions. However, the influence of distinct DNA repair systems on organismal FA resistance remains elusive. We have here investigated the consequence of a range of DNA repair mutants in a model of endogenous FA overload generated by downregulating the orthologs of human ADH5 and ALDH2 in C. elegans. We have focused on the distinct components of nucleotide excision repair (NER) during developmental growth, reproduction and aging. Our results reveal three distinct modes of repair of FA-induced DNA damage: Transcription-coupled repair (TCR) operating NER-independently during developmental growth or through NER during adulthood, and, in concert with global-genome (GG-) NER, in the germline and early embryonic development. Additionally, we show that the Cockayne syndrome B (CSB) factor is involved in the resolution of FA-induced DNA-protein crosslinks, and that the antioxidant and FA quencher N-acetyl-l-cysteine (NAC) reverses the sensitivity of detoxification and DNA repair defects during development, suggesting a therapeutic intervention to revert FA-pathogenic consequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317141PMC
http://dx.doi.org/10.1093/nar/gkae519DOI Listing

Publication Analysis

Top Keywords

dna repair
16
distinct dna
8
adh5 aldh2
8
developmental growth
8
repair
7
distinct
4
repair mechanisms
4
mechanisms prevent
4
prevent formaldehyde
4
formaldehyde toxicity
4

Similar Publications

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Single-nucleotide-resolution genomic maps of O6-methylguanine from the glioblastoma drug temozolomide.

Nucleic Acids Res

January 2025

Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland.

Temozolomide kills cancer cells by forming O6-methylguanine (O6-MeG), which leads to cell cycle arrest and apoptosis. However, O6-MeG repair by O6-methylguanine-DNA methyltransferase (MGMT) contributes to drug resistance. Characterizing genomic profiles of O6-MeG could elucidate how O6-MeG accumulation is influenced by repair, but there are no methods to map genomic locations of O6-MeG.

View Article and Find Full Text PDF

Background: Anti-angiogenic agents, such as nintedanib and ramucirumab, when combined with docetaxel, are subsequent treatment options in patients with non-small cell lung cancer (NSCLC) who have failed on first-line chemotherapy or immunochemotherapy. However, to date, there are no validated predictive biomarkers for efficacy of anti-angiogenic therapies in this setting. The aim of this study was to explore whether genetic or genomic markers, alone or combined with clinical covariates, could be used to predict overall survival (OS) in patients with NSCLC who are eligible for treatment with nintedanib plus docetaxel.

View Article and Find Full Text PDF

The human genome contains numerous repetitive nucleotide sequences that display a propensity to fold into non-canonical DNA structures including G-quadruplexes (G4s). G4s have both positive and negative impacts on various aspects of nucleic acid metabolism including DNA replication, DNA repair and RNA transcription. Poly (ADP-ribose) polymerase (PARP1), an important anticancer drug target, has been recently shown to bind a subset of G4s, and to undergo auto-PARylation.

View Article and Find Full Text PDF

DNA viruses at once elicit and commandeer host pathways, including DNA repair pathways for virus replication. Despite encoding its own DNA polymerase and processivity factor, human cytomegalovirus (HCMV) recruits the cellular processivity factor, proliferating cell nuclear antigen (PCNA) and specialized host DNA polymerases involved in translesion synthesis (TLS) to replication compartments (RCs) where viral DNA (vDNA) is synthesized. While the recruitment of TLS polymerases is important for viral genome stability, the role of PCNA is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!