A synergetic interaction between two or more photochromic chromophores has a potential to achieve advanced photochemical properties beyond conventional photochromic molecules and to realize photochemical control of complex systems using only a single molecule. Herein, we report a hybrid photochromic molecule consisting of hexaarylbiimidazole (HABI) and terarylene that exhibits multi-state photochromism. The biphotochrome hybrid shows four-state photochromic reaction involving sequentially proceeding photoreactions. The UV or visible light irradiation to the biphotochrome leads to the C-N bond breaking reaction of the HABI in preference to the ring-closing reaction of the 6π-electron system in the terarylene unit, leading to two terarylene radical molecules. The photogenerated terarylene radical further exhibits the 6π-electrocyclization reaction by UV irradiation. The delocalized π-radical on the closed-ring form of the terarylene is efficient to enhance the photosensitivity to the NIR-I and -II region. Furthermore, a recombination reaction of radicals between the open- and closed-ring isomers of terarylene affords an unprecedented photochromic dimer as a structural isomer of the initial molecule. This is a consequence of the sequential hybrid photochromic system involving the HABI and terarylene units.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202410115 | DOI Listing |
Int J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China. Electronic address:
Inkless paper made from photochromic materials has garnered significant interest owing to its potential to reduce both ink and paper pollution during production. In this research, we synthesized a dual-material film (EC-PVP/PGMEA/PMoA) and conducted a detailed investigation of its photochromic response to visible light and its microstructural properties. Initially, the film appeared as a translucent yellow, but upon exposure to visible light, it shifted to blue with a maximum absorption peak of 2.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
As an emerging class of hybrid materials, donor-acceptor (D-A) hybrid crystals with photoactive organic and inorganic components have gradually become an ideal platform for photochromic materials. Wherein the most available organic components are electron-poor naphthalenediimide, pyridinium, and triazine derivatives, inorganic units are electron-rich polyoxometalates and metal halides. Herein, we introduced pyridinium moieties into the naphthalenediimide core by conjugated bonds so as to increase the electron deficiency of organic species for enhanced photochromic properties.
View Article and Find Full Text PDFNanoscale
December 2024
School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
Molybdenum disulfide (MoS) is a notable two-dimensional (2D) transition metal dichalcogenide (TMD) with properties ideal for nanoelectronic and optoelectronic applications. With growing interest in the material, it is critical to understand its layer-number-dependent properties and develop strategies for controlling them. Here, we demonstrate a photo-modulation of MoS flakes and elucidate layer-number-dependent charge transfer behaviors.
View Article and Find Full Text PDFNanoscale
December 2024
Soft Foundry Institute, College of Engineering, Seoul National University, Seoul, Republic of Korea.
Brookite exists as the metastable phase of titania and often mediates the transformation of anatase to rutile. The photocatalytic competence of brookite relative to polymorphs anatase and rutile has generally been considered structurally and energetically unfavourable for reasons that remain largely unknown and unchallenged. However, the process of phase transformation and performance related cooperativity among all three polymorphs has recently unlocked alternative directions for exploring brookite photovoltaics.
View Article and Find Full Text PDFPhotochem Photobiol Sci
November 2024
Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
Perovskite quantum dots (pQDs) have gathered a lot of attention because of their outstanding optoelectronic properties. Photoswitchable pQDs have the potential for application in single particle optical memories and bio-imaging. Hybrids of photochromic diarylethenes (DAE) and pQDs show a luminescence photoswitching property, however, the cycle stability in such systems is low because of photoinduced electron transfer (PET) from pQDs to DAE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!