Aquaporins (AQPs) are recognized as transmembrane water channels that facilitate selective water permeation through their monomeric pores. Among the AQP family, AQP6 has an intriguing characteristic as an anion channel, which is allosterically controlled by pH conditions and is eliminated by a single amino acid mutation. However, the molecular mechanism of anion permeation through AQP6 remains unclear. Using molecular dynamics simulations in the presence of a transmembrane voltage utilizing an ion concentration gradient, we show that chloride ions permeate through the pore corresponding to the central axis of the AQP6 homotetramer. Under low pH conditions, a subtle opening of the hydrophobic selectivity filter (SF), located near the extracellular part of the central pore, becomes wetted and enables anion permeation. Our simulations also indicate that a single mutation (N63G) in human AQP6, located at the central pore, significantly reduces anion conduction, consistent with experimental data. Moreover, we demonstrate that the pH-sensing mechanism in which the protonation of H184 and H189 under low pH conditions allosterically triggers the gating of the SF region. These results suggest a unique pH-dependent allosteric anion permeation mechanism in AQP6 and could clarify the role of the central pore in some of the AQP tetramers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365104 | PMC |
http://dx.doi.org/10.1016/j.bpj.2024.06.013 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Depto. de Química Biológica Ranwel Caputto. Facultad. Ciencias Químicas. Univ. Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina. Electronic address:
Lipophilic derivatives of vitamin C, known as ascorbyl-6-O-alkanoates (ASCn), have been mainly developed for use in cosmetics, pharmaceuticals, and the food industry as antioxidant additives. These derivatives are of biotechnological interest due to their antioxidant properties, amphiphilic behavior, capacity to self-organize into nano- and micro-structures, anionic nature, and low cost of synthesis. In this review, we will focus on the commercial amphiphile, 6-O-palmitoyl L-ascorbic acid (ASC16), and the shorter acyl chains derivatives, such as 6-O-myristoyl (ASC14) and 6-O-lauroyl L-ascorbic acid (ASC12).
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.
Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.
View Article and Find Full Text PDFWater Res
January 2025
Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan.
In the integrated circuit manufacturing process, reverse osmosis (RO) membranes are widely used for wastewater reclamation. However, fouling by typical surfactants significantly reduces membrane efficiency and lifespan. This study investigates the fouling mechanisms of typical surfactants-cetyl trimethyl ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and polyoxyethylene octyl phenyl ether (TX, nonionic)-on RO membranes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.
Field-effect transistor (FET) biosensors have significantly attracted interest across various disciplines because of their high sensitivity, time-saving, and label-free characteristics. However, it remains a grand challenge to interface the FET biosensor with complex liquid media. Unlike standard liquid electrolytes containing purified protein content, directly exposing FET biosensors to complex biological fluids introduces significant sensing noise, which is caused by the abundance of nonspecific proteins, viruses, and bacteria that adsorb to the biosensor surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!