Label-free biological cell imaging relies on rapid multimode phase imaging of biological samples in natural settings. To improve image contrast, phase is encoded into intensity information using the differential interference contrast (DIC) and Zernike phase contrast (ZPC) techniques. To enable multimode contrast-enhanced observation of unstained specimens, this paper proposes an improved multimode phase imaging method based on the transport of intensity equation (TIE), which combines conventional microscopy with computational imaging. The ZPC imaging module based on adaptive aperture adjustment is applied when the quantitative phase results of biological samples have been obtained by solving the TIE. Simultaneously, a rotationally symmetric shear-based technique is used that can yield isotropic DIC. In this paper, we describe numerical simulation and optical experiments carried out to validate the accuracy and viability of this technology. The calculated Michelson contrast of the ZPC image in the resolution plate experiment increased from 0.196 to 0.394.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.202400137 | DOI Listing |
J Chem Phys
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. Electronic address:
Z-classified topological phases lead to a larger-than-unity number of topological states. However, these multiple topological states are only localized at the corners in nonlocal systems. Here, first, we rigorously prove that the multiple topological states of nonlocal Su-Schrieffer-Heeger (SSH) chains can be inherited and realized by local aperiodic chains with only the nearest couplings.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Van der Waals (vdW) semiconductors have emerged as promising platforms for efficient nonlinear optical conversion, including harmonic and entangled photon generation. Although major efforts are devoted to integrating vdW materials in nanoscale waveguides for miniaturization, the realization of efficient, phase-matched conversion in these platforms remains challenging. Here, to address this challenge, we report a far-field ultrafast imaging method to track the propagation of both fundamental and harmonic waves within vdW waveguides with femtosecond and sub-50 nanometre spatiotemporal precision.
View Article and Find Full Text PDFUltrasonics
January 2025
College of Aerospace Engineering, Chongqing University, Chongqing 400044, China. Electronic address:
This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.
View Article and Find Full Text PDFNat Commun
January 2025
Robotics Institute and State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Hydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!