AI Article Synopsis

  • The paper outlines a method for detecting seismic activity precursors using data from Swarm satellites, aiming to reduce the impact of earthquakes on society and the economy.
  • Researchers are leveraging improved electromagnetic field monitoring capabilities to potentially identify anomalies linked to seismic events, using a new probabilistic model based on Martingale theories.
  • Experiments demonstrate that this enhanced detection approach offers greater accuracy than traditional methods, validating its effectiveness through benchmark datasets and real-world earthquake case studies in Mexico, Greece, and Croatia.

Article Abstract

The detection of seismic activity precursors as part of an alarm system will provide opportunities for minimization of the social and economic impact caused by earthquakes. It has long been envisaged, and a growing body of empirical evidence suggests that the Earth's electromagnetic field could contain precursors to seismic events. The ability to capture and monitor electromagnetic field activity has increased in the past years as more sensors and methodologies emerge. Missions such as Swarm have enabled researchers to access near-continuous observations of electromagnetic activity at second intervals, allowing for more detailed studies on weather and earthquakes. In this paper, we present an approach designed to detect anomalies in electromagnetic field data from Swarm satellites. This works towards developing a continuous and effective monitoring system of seismic activities based on SWARM measurements. We develop an enhanced form of a probabilistic model based on the Martingale theories that allow for testing the null hypothesis to indicate abnormal changes in electromagnetic field activity. We evaluate this enhanced approach in two experiments. Firstly, we perform a quantitative comparison on well-understood and popular benchmark datasets alongside the conventional approach. We find that the enhanced version produces more accurate anomaly detection overall. Secondly, we use three case studies of seismic activity (namely, earthquakes in Mexico, Greece, and Croatia) to assess our approach and the results show that our method can detect anomalous phenomena in the electromagnetic data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175350PMC
http://dx.doi.org/10.3390/s24113654DOI Listing

Publication Analysis

Top Keywords

electromagnetic field
16
seismic activity
8
field activity
8
electromagnetic
6
seismic
5
activity
5
detection electromagnetic
4
electromagnetic seismic
4
seismic precursors
4
swarm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!