The Rich spatial and angular information in light field images enables accurate depth estimation, which is a crucial aspect of environmental perception. However, the abundance of light field information also leads to high computational costs and memory pressure. Typically, selectively pruning some light field information can significantly improve computational efficiency but at the expense of reduced depth estimation accuracy in the pruned model, especially in low-texture regions and occluded areas where angular diversity is reduced. In this study, we propose a lightweight disparity estimation model that balances speed and accuracy and enhances depth estimation accuracy in textureless regions. We combined cost matching methods based on absolute difference and correlation to construct cost volumes, improving both accuracy and robustness. Additionally, we developed a multi-scale disparity cost fusion architecture, employing 3D convolutions and a UNet-like structure to handle matching costs at different depth scales. This method effectively integrates information across scales, utilizing the UNet structure for efficient fusion and completion of cost volumes, thus yielding more precise depth maps. Extensive testing shows that our method achieves computational efficiency on par with the most efficient existing methods, yet with double the accuracy. Moreover, our approach achieves comparable accuracy to the current highest-accuracy methods but with an order of magnitude improvement in computational performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175282 | PMC |
http://dx.doi.org/10.3390/s24113583 | DOI Listing |
Biomol NMR Assign
January 2025
High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.
View Article and Find Full Text PDFNano Lett
January 2025
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.
Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.
View Article and Find Full Text PDFToxicol Pathol
January 2025
Greenfield Pathology Services, Inc., Greenfield, Indiana, USA.
Recent trends in toxicological pathology include implementation of digital platforms that have gained rapid momentum in the field. Are we ready to fully implement this new modality? This opinion piece provides some practical perspectives on digital pathology such as its cost limitations, relative time requirements, and a few technical issues, some of which are encountered for specific lesions, that warrant caution. Although the potential for digital pathology assessment with whole slide images has made great strides, we are of the opinion that it is not yet ready for complete replacement of glass slides in toxicologic pathology safety assessments.
View Article and Find Full Text PDFNat Commun
January 2025
NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Density functional approximations can reduce the spin symmetry breaking observed for self-consistent field (SCF) solutions compared to Hartree-Fock theory, but the amount of exact Hartree-Fock (HF) exchange appears to be a key determinant in broken symmetry. To elucidate the precise role of exact exchange, we investigate the energy landscape of unrestricted Hartree-Fock and Kohn-Sham density functional theory for benzene and square cyclobutadiene, which provide paradigmatic examples of closed-shell and open-shell electronic structures, respectively. We find that increasing the amount of exact exchange leads to more local SCF minima, which can be characterized as combinatorial arrangements of unpaired electrons in the carbon π system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!