Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The paper introduces a computer vision methodology for detecting pitting corrosion in gas pipelines. To achieve this, a dataset comprising 576,000 images of pipelines with and without pitting corrosion was curated. A custom-designed and optimized convolutional neural network (CNN) was employed for binary classification, distinguishing between corroded and non-corroded images. This CNN architecture, despite having relatively few parameters compared to existing CNN classifiers, achieved a notably high classification accuracy of 98.44%. The proposed CNN outperformed many contemporary classifiers in its efficacy. By leveraging deep learning, this approach effectively eliminates the need for manual inspection of pipelines for pitting corrosion, thus streamlining what was previously a time-consuming and cost-ineffective process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175124 | PMC |
http://dx.doi.org/10.3390/s24113563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!