Deep Transfer Learning Method Using Self-Pixel and Global Channel Attentive Regularization.

Sensors (Basel)

Department of Computer Science, Sangmyung University, Seoul 03016, Republic of Korea.

Published: May 2024

The purpose of this paper is to propose a novel transfer learning regularization method based on knowledge distillation. Recently, transfer learning methods have been used in various fields. However, problems such as knowledge loss still occur during the process of transfer learning to a new target dataset. To solve these problems, there are various regularization methods based on knowledge distillation techniques. In this paper, we propose a transfer learning regularization method based on feature map alignment used in the field of knowledge distillation. The proposed method is composed of two attention-based submodules: self-pixel attention (SPA) and global channel attention (GCA). The self-pixel attention submodule utilizes both the feature maps of the source and target models, so that it provides an opportunity to jointly consider the features of the target and the knowledge of the source. The global channel attention submodule determines the importance of channels through all layers, unlike the existing methods that calculate these only within a single layer. Accordingly, transfer learning regularization is performed by considering both the interior of each single layer and the depth of the entire layer. Consequently, the proposed method using both of these submodules showed overall improved classification accuracy than the existing methods in classification experiments on commonly used datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175273PMC
http://dx.doi.org/10.3390/s24113522DOI Listing

Publication Analysis

Top Keywords

transfer learning
24
global channel
12
learning regularization
12
knowledge distillation
12
paper propose
8
regularization method
8
method based
8
based knowledge
8
proposed method
8
self-pixel attention
8

Similar Publications

This research letter discusses the impact of different file formats on ChatGPT-4's performance on the Japanese National Nursing Examination, highlighting the need for standardized reporting protocols to enhance the integration of artificial intelligence in nursing education and practice.

View Article and Find Full Text PDF

Background: Patients with cerebrovascular accident (CVA) should be involved in setting their rehabilitation goals. A personalized prediction of CVA outcomes would allow care professionals to better inform patients and informal caregivers. Several accurate prediction models have been created, but acceptance and proper implementation of the models are prerequisites for model adoption.

View Article and Find Full Text PDF

Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.

View Article and Find Full Text PDF

Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!