Inline analytics in industrial processes reduce operating costs and production rejection. Dedicated sensors enable inline process monitoring and control tailored to the application of interest. Nuclear Magnetic Resonance is a well-known analytical technique but needs adapting for low-cost, reliable and robust process monitoring. A V-shaped low-field NMR sensor was developed for inline process monitoring and allows non-destructive and non-invasive measurements of materials, for example in a pipe. In this paper, the industrial application is specifically devoted to the quality control of anode slurries in battery production. The characterization of anode slurries was performed with the sensor to determine chemical composition and detect gas inclusions. Additionally, flow properties play an important role in continuous production processes. Therefore, the in- and outflow effects were investigated with the V-shaped NMR sensor as a basis for the future determination of slurry flow fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174442 | PMC |
http://dx.doi.org/10.3390/s24113353 | DOI Listing |
Small
December 2024
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China.
LiNiMnO (LNMO), with its spinel symmetry, emerges as a promising cathode material for high-voltage lithium-ion batteries (LIBs). Nonetheless, the vulnerability of LNMO to interfacial degradation, particularly electrolyte breakdown during high-voltage operation, compromises its long-term cycling performance. To overcome this longstanding challenge, a slurry additive-polyester-urethane-acrylate (PEUA)-to form a multi-functional ultra-thin electrode coating, enhancing the lifespan and energy density of LIBs is introduced.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, F-68100 Mulhouse, France.
The development of hard carbon (HC) electrodes using biobased binders, formulated in water solvent, is of great interest for Na-ion batteries. Five Na-carboxymethyl cellulose (CMC) binders with different molecular weights and degrees of substitution were investigated. The increase in the CMC molecular weight led to an increase in the volume of water necessary for slurry preparation and a decrease in the electrode mass loading.
View Article and Find Full Text PDFSensors (Basel)
September 2024
Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
Quality control in a production plant shows its maximum potential in the form of inline measurements. Defects and imperfections can be detected early and directly, and waste and costs can be reduced. Nuclear Magnetic Resonance offers a wide range of applications but requires dedicated adaptation to the respective process and material conditions.
View Article and Find Full Text PDFSci Rep
October 2024
Civil & Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran.
In this study, improvement of the electro-Fenton process using Fe-MIL-88B along with the innovation in the reactor with the simultaneous rotation of the cathodes and anodes was carried out to remove Acid Blue 25. For this purpose, the Fe-MIL-88B nanocatalyst was synthesised by the thermal solvent method and was characterised by FT-IR, EDAX, XRD, and FESEM. For the experiments, an electrochemical cell with a useful volume of 1 L and rotating cathodes and anodes were used and nanoparticles were added to the system as a slurry.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo FI-00076, P.O. Box 16100, Aalto, Finland.
Slurry spin coating is an effective approach for the fabrication of protonic ceramic electrolyte thin films. However, weak adhesion between the electrode and spin-coated electrolyte layers in electrochemical cells due to the low sinterability of the proton-conducting perovskite materials usually lead to a high interfacial resistance and thus a low performance. Herein, we report a method to improve the interfacial connection and boost the performance of protonic ceramic cells based on a BaZrCeYO (BZCY) electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!