In the paper, a new method of phase measurement error suppression in a phase-sensitive optical time domain reflectometer is proposed and experimentally proved. The main causes of phase measurement errors are identified and considered, such as the influence of the recording interferometer instabilities and laser wavelength instability, which can cause inaccuracies in phase unwrapping. The use of a Mach-Zender interferometer made by 3 × 3 fiber couplers is proposed and tested to provide insensitivity to the recording interferometer and laser source instabilities. It is shown that using all three available photodetectors of the interferometer, instead of just one pair, achieves significantly better accuracy in the phase unwrapping. A novel compensation scheme for accurate phase measurements in a phase-sensitive optical time domain reflectometer is proposed, and a comparison of the measurement signals with or without such compensation is shown and discussed. The proposed method, using three photodetectors, allows for very good compensation of the phase measurement errors arising from common-mode noise from the interferometer and laser source, providing a significant improvement in signal detection. In addition, the method allows the tracking of slow temperature changes in the monitored fiber/object, which is not obtainable when using a simple low-pass filter for phase unwrapping error reduction, as is customary in several systems of this kind.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174648 | PMC |
http://dx.doi.org/10.3390/s24113338 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
November 2024
Plastic and Polymer Engineering, Department of Biological and Chemical Engineering, Aarhus University, 8200 Aarhus N, Denmark. Electronic address:
Ptychography is a powerful imaging technique that is used in a variety of fields, including materials science, biology, and nanotechnology. However, the accuracy of the reconstructed ptychography image is highly dependent on the accuracy of the recorded probe positions which often contain errors. These errors are typically corrected jointly with phase retrieval through numerical optimization approaches.
View Article and Find Full Text PDFFresnel incoherent correlation holography (FINCH) records coaxial holograms for wide-field 3D imaging with incoherent light, but its temporal phase-shifting strategy makes dynamic imaging challenging. Here, we present a compact, portable single-shot mirrored phase-shifting (SSPMS) module that can be easily integrated into the FINCH system, achieving secondary modulation of self-interference beams to enable the simultaneous acquisition of four phase-shift holograms in a single exposure. Compared with previously reported methods that use diffraction gratings to spatially separate self-interference beams at specific angles, this module duplicates a laterally shifted mirrored beam using a simply modified Michelson interferometer, so the phase-shifting holograms obtained via this module are free from optical aberrations or higher-order diffracted light noises.
View Article and Find Full Text PDFNat Commun
August 2024
Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
Fiber-based interferometers receive significant interest as they lead to miniaturization of optoacoustic and ultrasound detectors without the quadratic loss of sensitivity common to piezoelectric elements. Nevertheless, in contrast to piezoelectric crystals, current fiber-based ultrasound detectors operate with narrow ultrasound bandwidth which limits the application range and spatial resolution achieved in imaging implementations. We port the concept of silicon waveguide etalon detection to optical fibers using a sub-acoustic reflection terminator to a Bragg grating embedded etalon resonator (EER), uniquely implementing direct and forward-looking access to incoming ultrasound waves.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2024
Institut für Physik, Universität Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany.
Laser interferometry is a well-established and widely used technique for precise displacement measurements. In a non-contact atomic force microscope (NC-AFM), it facilitates the force measurement by recording the periodic displacement of an oscillating microcantilever. To understand signal generation in a NC-AFM-based Michelson-type interferometer, we evaluate the non-linear response of the interferometer to the harmonic displacement of the cantilever in the time domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!