Scanning ion conductance microscopy (SICM) enables the non-invasive three-dimensional imaging of live cells and other structures in physiological environments. However, when imaging complex samples, SICM faces challenges such as having a low temporal resolution during slow scanning and a reduced signal-to-noise ratio during fast scanning, making it difficult to simultaneously improve both temporal and spatial resolution. To address these issues, this paper proposes an algorithm for enhancing image resolution under high-speed scanning. Firstly, scanning images are preprocessed using a median filtering algorithm to remove the salt-and-pepper noise generated during high-speed scanning. Next, the Canny edge detection algorithm is employed to extract the edges of the image targets. To avoid blurring the edges, the new edge-directed interpolation (NEDI) algorithm is then used to fill the edges, while non-edge areas are filled using bilinear interpolation, thereby enhancing the image resolution. Finally, the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) are used to analyze the imaging of articular chondrocytes. The results show that under a scanning speed of 480 nm/ms, the proposed algorithm improves the temporal resolution of imaging by 60% compared to traditional 2× resolution imaging, increases the peak signal-to-noise ratio of the scanning images by 7 dB, and achieves a structural similarity of 0.97. Therefore, the proposed algorithm effectively removes noise during high-speed scanning and improves the SICM scanning imaging resolution, thereby avoiding the reduction in temporal resolution when scanning larger resolution samples and effectively enhancing the performance of SICM scanning imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174451 | PMC |
http://dx.doi.org/10.3390/s24113291 | DOI Listing |
Anal Chem
January 2025
Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.
Epithelial-mesenchymal transition (EMT) is a drastic and important cellular process by which epithelial cells acquire a mesenchymal phenotype. Herein, we evaluated EMT-induced membrane variations using scanning ion conductance microscopy (SICM), which allows noninvasive nanoscale visualization. The results showed that the number and size of ruffles on the living cell surface decreased as the EMT progressed.
View Article and Find Full Text PDFFront Mol Neurosci
November 2024
Engelhardt Institute of Molecular Biology, Moscow, Russia.
Soft Matter
December 2024
Department of Physics, M.V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia.
The growing interest in biomimetic hydrogels is due to their successful applications in tissue engineering, 3D cell culturing and drug delivery. The major characteristics of hydrogels include swelling, porosity, degradation rate, biocompatibility, and mechanical properties. Poor mechanical properties can be regarded as the main limitation for the use of hydrogels in tissue engineering, and advanced techniques for its precise evaluation are of interest.
View Article and Find Full Text PDFChembiochem
November 2024
Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia.
This study aims to investigate the potential role of antioxidants in oxidative stress and its consequent impact on the mechanical properties of neuronal cells, particularly the stress induced by amyloid-beta (1-42) (Aβ) aggregates. A key aspect of our research involved using scanning ion-conductance microscopy (SICM) to assess the mechanical properties (Young's modulus) of neuronal cells under oxidative stress. Reactive oxygen species (ROS) level was measured in single-cell using the electrochemical method by low-invasive Pt nanoelectrode.
View Article and Find Full Text PDFFASEB J
November 2024
Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany.
Platelet activation plays a critical role in thrombosis and hemostasis. Several pathophysiological situations lead to hemolysis, resulting in the liberation of free ferric iron-containing hemin. Hemin has been shown to activate platelets and induce thrombo-inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!