With the steady increase in allergy prevalence worldwide, there is a strong need for novel diagnostic tools for precise, fast, and less invasive testing methods. Herein, a miniatured fluorescence-based biosensing system is developed for the rapid and quantitative detection of allergen-specific immunoglobulin-E. An antibody-based fluorescence assay in a microfluidic-patterned slide, combined with a custom-made portable fluorescence reader for image acquisition and user-friendly software for the data analysis, enables obtaining results for multiple allergens in just ~1 h with only 80 μL of blood serum. The multiplexed detection of common birch, timothy grass, cat epithelia, house dust mite, and dog epithelia shows quantitative IgE-mediated allergic responses to specific allergens in control serum samples with known total IgE concentration. The responses are verified with different control tests and measurements with a commercial fluorescence reader. These results open the door to point-of-care allergy screening for early diagnosis and broader access and for large-scale research in allergies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174465 | PMC |
http://dx.doi.org/10.3390/s24113280 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!