General interest in the deployment of molten salt reactors (MSRs) is growing, while the available data on uranium-containing fuel salt candidates remains scarce. Thermophysical data are one of the key parameters for reactor design and understanding reactor operability. Hence, filling in the gap of the missing data is crucial to allow for the advancement of MSRs. This study provides novel data for two eutectic compositions within the NaF-KF-UF ternary system which serve as potential fuel candidates for MSRs. Experimental measurements include their melting point, density, fusion enthalpy, and vapor pressure. Additionally, their boiling point was extrapolated from the vapor pressure data, which were, at the same time, used to determine the enthalpy of vaporization. The obtained thermodynamic values were compared with available data from the literature but also with results from thermochemical equilibrium calculations using the JRCMSD database, finding a good correlation, which thus contributed to database validation. Preliminary thoughts on fluoride salt reactor operability based on the obtained results are discussed in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173649PMC
http://dx.doi.org/10.3390/ma17112776DOI Listing

Publication Analysis

Top Keywords

reactor operability
8
vapor pressure
8
data
6
thermophysical properties
4
properties funak
4
funak naf-kf-uf
4
naf-kf-uf eutectics
4
eutectics general
4
general interest
4
interest deployment
4

Similar Publications

Final CONUS Results on Coherent Elastic Neutrino-Nucleus Scattering at the Brokdorf Reactor.

Phys Rev Lett

December 2024

PreussenElektra GmbH, Kernkraftwerk Brokdorf GmbH & Co. oHG, Osterende, 25576 Brokdorf, Germany.

The CONUS experiment studies coherent elastic neutrino-nucleus scattering in four 1 kg germanium spectrometers. Low ionization energy thresholds of 210 eV were achieved. The detectors were operated inside an optimized shield at the Brokdorf nuclear power plant which provided a reactor antineutrino flux of up to 2.

View Article and Find Full Text PDF

In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.

View Article and Find Full Text PDF

How biofilm and granular sludge cope with dissolved oxygen exposure in anammox process: Performance, bioaccumulation characteristics and bacterial evolution.

J Environ Manage

December 2024

Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China. Electronic address:

In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L hardly affected the total nitrogen removal efficiency (TNRE).

View Article and Find Full Text PDF

Bioelectrochemically improved anaerobic digestion (AD-BES) represents an upgrading strategy for existing biogas plants, consisting of the integration of bioelectrodes within the AD reactor. For this study, a series of laboratory-scale AD-BES reactors were operated, valorising agricultural digestates through the production of biogas. The reactors were inoculated and started-up with three different digestates, leading to significant differences in the microbial community developed on the bioelectrodes.

View Article and Find Full Text PDF

Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives.

Bioresour Technol

December 2024

School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea. Electronic address:

A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!