The depletion of valuable mineral reserves has rendered effluents generated from mining and industrial processing activities a promising resource for the production of precious elements. The synthesis and improvement of new adsorbents to extract valuable compounds from industrial wastes and pregnant leach solutions, besides increasing wealth, can play a significant role in reducing environmental concerns. In this work, a new and low-cost adsorbent for the selective extraction of rhenium (perrhenate ions, ReO) was synthesized by the free-radical polymerization (FRP) of a diallyl dimethylammonium chloride monomer (quaternary amine) in the presence of a crosslinker. Various methods were employed to characterize the polymeric adsorbent. The results revealed that the designed polymeric adsorbent had a high surface area and pores with nano-metric dimensions and a pore volume of 6.4 × 10 cm/g. Four environments-single, binary, multicomponent, and real solutions-were applied to evaluate the adsorbent's performance in the selective separation of Re. Additionally, these environments were used to understand the behavior of molybdenum ions, the primary competitors of perrhenate ions in the ion exchange process. In competitive conditions, using variations in /, an antagonism phenomenon (/ < 1) occurred due to the inhibitory effect of surface-adsorbed molybdenum ions on the binding of the perrhenate ions. However, across all conditions, the separation values for Re were higher than those for the other studied elements (Mo, Cu, Fe).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173758PMC
http://dx.doi.org/10.3390/ma17112737DOI Listing

Publication Analysis

Top Keywords

perrhenate ions
12
adsorbent selective
8
selective separation
8
pregnant leach
8
leach solutions
8
polymeric adsorbent
8
molybdenum ions
8
ions
6
crosslinked polydiallyldimethylammonium
4
polydiallyldimethylammonium chloride
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!