Thermal transport is of grave importance in many high-value applications. Heat dissipation can be improved by utilizing liquid metals as thermal interface materials. Yet, liquid metals exhibit corrosivity towards many metals used for heat sinks, such as aluminum, and other electrical devices (i.e., copper). The compatibility of the liquid metal with the heat sink or device material as well as its long-term stability are important performance variables for thermal management systems. Herein, the compatibility of the liquid metal Galinstan, a eutectic alloy of gallium, indium, and tin, with diamond coatings and the stability of the liquid metal in this environment are scrutinized. The liquid metal did not penetrate the diamond coating nor corrode it. However, the liquid metal solidified with the progression of time, starting from the second year. After 4 years of aging, the liquid metal on all samples solidified, which cannot be explained by the dissolution of aluminum from the titanium alloy. In contrast, the solidification arose from oxidation by oxygen, followed by hydrolysis to GaOOH due to the humidity in the air. The hydrolysis led to dealloying, where In and Sn remained an alloy while Ga separated as GaOOH. This hydrolysis has implications for many devices based on gallium alloys and should be considered during the design phase of liquid metal-enabled products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174033PMC
http://dx.doi.org/10.3390/ma17112683DOI Listing

Publication Analysis

Top Keywords

liquid metal
24
liquid
9
gallium indium
8
indium tin
8
liquid metals
8
compatibility liquid
8
metal
6
long-term corrosion
4
corrosion eutectic
4
eutectic gallium
4

Similar Publications

Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.

View Article and Find Full Text PDF

Pigment particles used in tattooing may exert long terms effect by releasing diffusible degradation products. In the present work, aqueous suspensions of the organic orange diazo pigment PO13 were aged by exposure to simulated sunlight at 40 °C. The morphology and the surface charge of PO13 particles were barely modified upon aging, but primary particles were released by de-agglomeration.

View Article and Find Full Text PDF

Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).

View Article and Find Full Text PDF

Evaluation of testing approaches for constituent leaching from electric arc furnace (EAF) slags.

J Environ Manage

January 2025

Department of Civil and Environmental Engineering, Vanderbilt University, PMB 351826, Nashville, TN, 37235-1826, USA. Electronic address:

Increased usage of electric arc furnace (EAF) slags as soil amendments and surface aggregates raises concerns regarding heavy metal release. However, no standardized leaching characterization approach exists for EAF slags and other industrial materials. This study compares test results for three EAF slags using several testing approaches: (i) total content analysis, (ii) single-batch extractions (i.

View Article and Find Full Text PDF

Printed circuit boards represent an extraordinarily challenging fraction for the recycling of waste electric and electronic equipment. Due to the closely interlinked structure of the composing materials, the selective recycling of copper and closely associated precious metals from this composite material is compromised by losses during mechanical pre-processing. This problem could partially be overcome by a better understanding of the influence of particle size and shape on the recovery of finely comminuted and well-liberated metal particles during mechanical separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!