The present work is aimed at studying the effects of the magnetorheological finishing process, using a low-frequency alternating magnetic field, on the finishing performance of 6063 aluminum alloy. The study investigates the influence of key excitation parameters such as current, frequency, excitation gap, and iron powder diameter on the material removal and surface roughness (Ra) of the finished workpiece by experiments. This study employs a single-factor experimental method, and the finish surface is analyzed by a Zigo non-contact white light interferometer. The magnetic field strength in the processing area increases with the increase in the excitation current and decreases with the increase in the excitation gap. When the current frequency is set to 1 Hz, the circulation and renewal of abrasives in the magnetic cluster is most sufficient, resulting in the optimal surface roughness value for the workpiece. According to the experimental results of the excitation parameters, more suitable process parameters were selected for a two-stage finishing experiment. The surface roughness of 6063 aluminum alloy was improved from 285 nm to 3.54 nm. Experimental results highlighted that the magnetorheological finishing using a low-frequency alternating magnetic field is a potential technique for obtaining nano-scale finishing of the 6063 aluminum alloy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173828 | PMC |
http://dx.doi.org/10.3390/ma17112670 | DOI Listing |
Materials (Basel)
December 2024
Dongfeng Liuzhou Automobile Co., Ltd., Liuzhou 545005, China.
This study investigates the evolution mechanisms and electrochemical corrosion behavior of laser-welded joints (WJs) between 6063 and 6082 dissimilar aluminum alloys under varying welding powers. The analysis focused on the microstructure of the weld metal zone (WMZ), its grain boundary (GB) features, and its electrochemical corrosion properties. Data from the experiments indicate that a higher laser power (LP) leads to an increase in grain size within the WMZ.
View Article and Find Full Text PDFNat Commun
December 2024
Pacific Northwest National Laboratory, Richland, WA, USA.
Although recycling secondary aluminum can lead to energy consumption reduction compared to primary aluminum manufacturing, products produced by traditional melt-based recycling processes are inherently limited in terms of alloy composition and microstructure, and thus final properties. To overcome the constraints associated with melting, we have developed a solid-phase recycling and simultaneous alloying method. This innovative process enables the alloying of 6063 aluminum scrap with copper, zinc, and magnesium to form a nanocluster-strengthened high-performance aluminum alloy with a composition and properties akin to 7075 aluminum alloy.
View Article and Find Full Text PDFMaterials (Basel)
July 2024
College of Science, Northeast Forestry University, Harbin 150040, China.
The production of aluminum alloy multi-lumen tubes primarily involves hot bending formation, a process where controlling thermal deformation quality is difficult. Specifically, the inner cavity wall of the tube is prone to bending instability defects under the bending stress field. To address these challenges in the bending deformation of aluminum alloy multi-lumen tubes, a multi-lumen liquid-filled bypass forming method is proposed in this paper.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
School of Mechanical and Electrical Engineering, Shaoxing University, Shaoxing 312000, China.
The present work is aimed at studying the effects of the magnetorheological finishing process, using a low-frequency alternating magnetic field, on the finishing performance of 6063 aluminum alloy. The study investigates the influence of key excitation parameters such as current, frequency, excitation gap, and iron powder diameter on the material removal and surface roughness (Ra) of the finished workpiece by experiments. This study employs a single-factor experimental method, and the finish surface is analyzed by a Zigo non-contact white light interferometer.
View Article and Find Full Text PDFMaterials (Basel)
April 2024
School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!