The main motivation for this research was to improve the properties of geopolymers by reinforcement using synthetic and natural fibers, and to gain new knowledge regarding how the nature and/or the quantity of reinforcement fibers influences the properties of the final geopolymers. The main objective was to investigate the effects of different types of reinforcement fibers on the properties of the geopolymers. These reinforcement fibers were mainly environmentally friendly materials that can be used as alternatives to ordinary Portland cement. The authors used fly ash and river sand as the raw materials for the matrix, and added carbon fibers (CF), flax fibers (FF), or a hybrid of both (CFM) as reinforcements. The samples were prepared by mixing, casting, and curing, and then subjected to various tests. The main research methods used were compressive strength (CS), flexural strength (FS), water absorption (WA), abrasion resistance (Böhme's disk method), microstructure analysis (SEM), chemical composition (XRF), and crystal structure analysis (XRD). The results showed that the addition of fibers partially improved the mechanical properties of the geopolymers, as well as reducing microcracks. The CF-reinforced geopolymers exhibited the highest compressive strength, while the FF-reinforced geopolymers showed the lowest water absorption. The authors, based on previous research, also discussed the factors that influence fiber-matrix adhesion, and the optimal fiber content for geopolymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173711PMC
http://dx.doi.org/10.3390/ma17112633DOI Listing

Publication Analysis

Top Keywords

properties geopolymers
12
reinforcement fibers
12
fibers
9
flax fibers
8
carbon fibers
8
geopolymers reinforcement
8
compressive strength
8
water absorption
8
geopolymers
7
properties
5

Similar Publications

Application of a Generalized Utility Function to Determine the Optimal Composition of Geopolymer Mortar.

Materials (Basel)

December 2024

Department of Building Materials Engineering, Faculty of Civil Engineering, Warsaw University of Technology, Armii Ludowej 16, 00-637 Warsaw, Poland.

The aim of the presented research was to evaluate the impacts of modifications to the technical properties of fly ash-based geopolymer composites, particularly focusing on enhancing the thermal insulation. Through the utilization of a generalized utility function, optimal dosages of additives such as perlite sand, waste perlite powder, and cenospheres were determined. The study aimed to increase the thermal insulation of the composites while maintaining satisfactory compressive and flexural strength.

View Article and Find Full Text PDF

Geopolymer Foam with Low Thermal Conductivity Based on Industrial Waste.

Materials (Basel)

December 2024

Faculty of Materials Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland.

Geopolymer materials are increasingly being considered as an alternative to environmentally damaging concrete based on Portland cement. The presented work analyzed waste from mines and waste incineration plants as potential precursors for producing geopolymer materials that could be used to make lightweight foamed geopolymers for insulation applications. The chemical and phase composition, radioactivity properties, and leachability of selected precursors were analyzed.

View Article and Find Full Text PDF

Copper flotation tailings (FTs), resulting from the separation and beneficiation processes of ores, are a significant source of environmental pollution (acid mine drainage, toxic elements leaching, and dust generation). The most common disposal method for this industrial waste is dumping. However, due to their favorable physical and chemical properties-the high content of aluminosilicate minerals (60-90%)-flotation tailings can be effectively treated and reused through geopolymerization technology, thereby adding value to this waste.

View Article and Find Full Text PDF

The synthesis of an iron tailings-based geopolymer with synergistic electromagnetic wave consumption property.

Environ Res

January 2025

School of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China; Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou University, Fuzhou, Fujian 350108, China.

In this study, combination of wave absorption materials with different loss mechanisms are added into iron ore tailings-blast furnace slag (IOT-BFS) based geopolymers. The employed materials are hollow glass microsphere (HGM), carbon nanotubes (CNT) and carbonyl iron powder (CIP). Microstructures of the geopolymers are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and concrete porous structure analyzer.

View Article and Find Full Text PDF

This study explores the mechanical properties of geopolymer mortars incorporating ceramic and glass powders sourced from industrial waste. A Box-Behnken design was employed to assess the effects of ceramic waste powder (CWP) content, alkaline activator ratio, solution-to-binder (S: B) ratio, and oven curing duration on the mortar's performance. Compressive strengths were measured at 3 and 28 days, and regression models were developed to predict these outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!