Optimization of Pressurized Alkaline Hydrolysis for Chemical Recycling of Post-Consumer PET Waste.

Materials (Basel)

GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Edificio 202, 48170 Zamudio, Spain.

Published: May 2024

Addressing the environmental impact of poly(ethylene terephthalate) (PET) disposal highlights the need for efficient recycling methods. Chemical recycling, specifically alkaline hydrolysis, presents a promising avenue for PET waste management by depolymerizing PET into its constituent monomers. This study focuses on optimizing the pressurized alkaline hydrolysis process for post-consumer PET residues obtained from packaging materials. Post-consumer PET packaging waste was chemically recycled by means of an alkaline hydrolysis reaction in a 2 L pressurized reactor under varying conditions of the NaOH/PET ratio and temperature. The reaction's progress was monitored by sampling the liquid phase hourly over a four-hour period. The obtained products were purified, with a focus on isolating terephthalic acid (TPA). Higher temperatures (150 °C) resulted in superior TPA yields (>95%) compared to lower temperatures (120 °C). The NaOH/PET ratio showed minimal influence on the TPA yield. The optimal conditions (T = 150 °C; NaOH:PET = 2) were identified based on TPA yield and reaction cost considerations. This study demonstrates the feasibility of pressurized alkaline hydrolysis for PET recycling, with optimized conditions yielding high TPA purity and efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173775PMC
http://dx.doi.org/10.3390/ma17112619DOI Listing

Publication Analysis

Top Keywords

alkaline hydrolysis
20
pressurized alkaline
12
post-consumer pet
12
chemical recycling
8
pet waste
8
naoh/pet ratio
8
150 °c
8
tpa yield
8
pet
7
alkaline
5

Similar Publications

Protein hydrolysis under acidic conditions can improve the product quality, nutrient availability, and cost efficiency, particularly when neutral or alkaline enzymes are ineffective. Six fungal aspartic endopeptidases (FAPs) were recombinantly expressed as active enzymes in , with peak activity between 30-50 °C and pH 3.0-4.

View Article and Find Full Text PDF

Cellulose nanostructures obtained from lignocellulosic biomass via enzymatic processes may offer advantages in terms of material properties and processing sustainability. Thus, in this study, cellulose nanoparticles with a spherical morphology were produced through the enzymatic hydrolysis of cashew apple bagasse (CAB). CAB was previously subjected to alkaline and acid-alkali pretreatment, and the pretreated solids were labeled as CAB-PTA and CAB-PT-HA, respectively.

View Article and Find Full Text PDF

Primary sludge can serve as an internal carbon source for denitrification in wastewater treatment plants (WWTPs). This study explores the use of alkaline treatment to produce a fermentation broth from primary sludge, which predominantly contains short-chain volatile fatty acids (VFAs), with acetic acid and propionic acid making up over 65% of the total VFAs. The performance of this fermentation broth as a sole carbon source for denitrification was compared with that of sodium acetate, acetic acid, methanol, and ethanol in both biofilm and activated sludge systems.

View Article and Find Full Text PDF

Preparation and characterization of cellulose nanocrystal coated with silver nanoparticles with antimicrobial activity by enzyme method.

Int J Biol Macromol

December 2024

Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China. Electronic address:

Silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity and serve as effective antimicrobial agents against antibiotic-resistant bacteria. In this study, agricultural waste corn straw was used as the raw material to obtain cellulose nanocrystal (CNC) through enzymatic hydrolysis. The hydrolysate was employed as reducing agents to synthesize CNC-AgNPs.

View Article and Find Full Text PDF

Polymer-based catalysts have garnered significant interest for their efficiency, reusability, and compatibility with various synthesis processes. In catalytic applications, polymers offer the advantage of structural versatility, enabling functional groups to be tailored for specific catalytic activities. In this study, we developed a novel magnetic copolymer of methyl methacrylate and maleic anhydride (PMMAn), synthesized via in situ chemical polymerization of methyl methacrylate onto maleic anhydride, using benzoyl peroxide as a free-radical initiator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!