Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the lower cost compared to screen-printed silver contacts, the Ni/Cu/Ag contacts formed by plating have been continuously studied as a potential metallization technology for solar cells. To address the adhesion issue of backside grid lines in electroplated n-Tunnel Oxide Passivating Contacts (n-TOPCon) solar cells and reduce ohmic contact, we propose a novel approach of adding a Ni/Si alloy seed layer between the Ni and Si layers. The metal nickel layer is deposited on the backside of the solar cells using electron beam evaporation, and excess nickel is removed by HSO:HO etchant under annealing conditions of 300-425 °C to form a seed layer. The adhesion strength increased by more than 0.5 N mm and the contact resistance dropped by 0.5 mΩ cm in comparison to the traditional direct plating Ni/Cu/Ag method. This is because the resulting Ni/Si alloy has outstanding electrical conductivity, and the produced Ni/Si alloy has higher adhesion over direct contact between the nickel-silicon interface, as well as enhanced surface roughness. The results showed that at an annealing temperature of 375 °C, the main compound formed was NiSi, with a contact resistance of 1 mΩ cm and a maximum gate line adhesion of 2.7 N mm. This method proposes a new technical solution for cost reduction and efficiency improvement of n-TOPCon solar cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173731 | PMC |
http://dx.doi.org/10.3390/ma17112610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!