Robotic Friction Stir Welding (RFSW) technology integrates the advantages of friction stir welding and industrial robots, finding extensive applications and research in aerospace, shipbuilding, and new energy vehicles. However, the high-speed rotational process of friction stir welding combined with the low stiffness characteristics of serial industrial robots inevitably introduces vibrations during the welding process. This paper investigates the vibration patterns and impacts during the RFSW process and proposes an active vibration avoidance control method for variable speed welding based on constant heat input. This method utilizes a vibration feedback strategy that adjusts the spindle speed actively if the end-effector's vibration exceeds a threshold, thereby avoiding the modal frequencies of the robot at its current pose. Concurrently, it calculates and adjusts the welding speed of the robot according to the thermal equilibrium equation to maintain constant heat input. A simplified dynamic model of the RFSW robot was established, and the feasibility of this method was validated through simulation experiments. This study fills the gap in vibration analysis of RFSW and provides new insights into control strategies and process optimization for robotic friction stir welding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173399PMC
http://dx.doi.org/10.3390/ma17112593DOI Listing

Publication Analysis

Top Keywords

friction stir
20
stir welding
20
robotic friction
12
constant heat
12
heat input
12
welding
9
active vibration
8
vibration avoidance
8
method variable
8
variable speed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!