Rice Husk-Based Insulators: Manufacturing Process and Thermal Potential Assessment.

Materials (Basel)

Department of Mechanical Engineering, Universidad Tecnológica de Panamá, Panama City 0819-07289, Panama.

Published: May 2024

The development of bio-insultation materials has attracted increasing attention in building energy-saving fields. In tropical and hot-humid climates, building envelope insulation is important for an energy efficient and comfortable indoor environment. In this study, several experiments were carried out on a bio-insulation material, which was prepared by using rice husk as a raw material. Square rice husk-based insultation panels were developed, considering the ASTM C-177 dimensions, to perform thermal conductivity coefficient tests. The thermal conductivity coefficient obtained was 0.073 W/(m K), which is in the range of conventional thermal insulators. In a second phase of this study, two experimental enclosures (chambers) were constructed, one with rice husk-based insulation panels and the second one without this insulation. The measures of the temperatures and thermal flows through the chambers were obtained with an electronic module based on the ARDUINO platform. This module consisted of three DS18B20 temperature sensors and four Peltier plates. Daily temperature and heat flux data were collected for the two chambers during the dry season in Panama, specifically between April and May. In the experimental chamber that did not have rice husk panel insulation on the roof, a flow of up to 28.18 W/m was observed, while in the chamber that did have rice husk panels, the presence of a flow toward the interior was rarely observed. The rice husk-based insulation panels showed comparable performance with conventional insulators, as a sustainable solution that takes advantage of a local resource to improve thermal comfort and the reduction of the environmental impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173955PMC
http://dx.doi.org/10.3390/ma17112589DOI Listing

Publication Analysis

Top Keywords

rice husk-based
16
rice husk
12
thermal conductivity
8
conductivity coefficient
8
husk-based insulation
8
insulation panels
8
chamber rice
8
rice
7
thermal
6
insulation
5

Similar Publications

The rice husk biomass remaining from the industrial processing of rice constitutes approximately 25 wt% of the edible rice produced, and its disposal is challenging due to its high silica content. Here, we describe the optimization of a single step innovative chemical process for the conversion of rice husk-based biomass into useable products which tackles all fractions of the input biomass. The chemical process consists of a single step hydrothermal low temperature treatment of rice husk biomass leading to three easy-to-recover fractions.

View Article and Find Full Text PDF

Biochar-supported iron-containing minerals have received much attention due to their synergistic mechanism of decontamination in environmental pollution remediation. In this work, two types of iron/biochar were prepared from different biomasses using ferric chloride as the Fe source and rice husks and peanut shell as biomasses. The formation of fayalite (FeSiO) and magnetite (FeO) in rice husk and peanut shell derived biochar was proved by X-ray diffraction.

View Article and Find Full Text PDF

The present study investigated the adsorption of diclofenac sodium (DCF) and carbamazepine (CBZ) on carbon-silica composites (CSC), activated carbon (RH-AC) and biogenic silica (RH-BS) based on rice husks from aqueous solutions. The materials were characterised using scanning electron microscopy, infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, nitrogen sorption and elemental analysis. These methods provided essential information on the morphology, chemical composition, textural properties and surface characteristics of porous materials.

View Article and Find Full Text PDF

Correlative Effects of Carbon Support Structures and Surface Properties on ORR Catalytic Activities of Loaded Catalysts.

ACS Appl Mater Interfaces

September 2024

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

As a complex three-phase heterogeneous catalyst, the oxygen reduction reaction (ORR) catalyst activity is determined by the interfacial and surface structures and chemical state of the catalyst support. As a typical biomass carbon-based support, rice husk-based porous carbon (RHPC) has natural unique hierarchical porous structures, which easily regulate the microstructure and surface properties. This study explored the correlative effects of RHPC structure and surface properties on ORR catalytic activity through the typical modification methods, namely, alkali etching, high temperature, oxidation, and ball milling.

View Article and Find Full Text PDF

Rice Husk-Based Insulators: Manufacturing Process and Thermal Potential Assessment.

Materials (Basel)

May 2024

Department of Mechanical Engineering, Universidad Tecnológica de Panamá, Panama City 0819-07289, Panama.

The development of bio-insultation materials has attracted increasing attention in building energy-saving fields. In tropical and hot-humid climates, building envelope insulation is important for an energy efficient and comfortable indoor environment. In this study, several experiments were carried out on a bio-insulation material, which was prepared by using rice husk as a raw material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!