The static compaction technique emphasizes the reduced activator dosage required to develop geopolymers. Therefore, it is crucial to comprehend the optimal alkaline activator concentration for blending low-calcium precursor (fly ash) with high-calcium precursor (GGBS) to produce geopolymer blocks. This work was designed to optimize structural blocks' compressive strength and durability. In experimentation, fly ash (FA) and slag (GGBS) proportions were initially investigated under NaOH solution with varying molarity (8-12) and curing conditions to develop a load-bearing structural block. Subsequently, the durability of the optimized block was evaluated over 56 days through subjection to sulfate and acidic solutions, with efflorescence monitored over the same period. The results reveal that the structural block comprised of 100% FA exhibits the highest compressive strength and lowest bulk density. Conversely, the block incorporating 25% slag that underwent hot curing demonstrates a remarkable 305% strength increase compared to ambient curing. Considering the physico-mechanical performance, the 100% FA block was chosen for durability investigation. The findings indicate a substantial strength loss exceeding 40% after exposure to sulfate and acidic environments over 56 days, coupled with pronounced efflorescence. Catastrophic failure occurs in all cases due to significant strength deterioration. The FTIR spectrum revealed the shifting of the wavenumber to a higher value and verified the depolymerization and leaching of alumina under acidic exposure. However, the developed geopolymer blocks demonstrate superior sustainability and feasibility compared to conventional fired clay bricks and cement-based FA bricks. Despite slightly higher costs, these blocks exhibit greater strength than their counterparts after enduring severe exposures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173317 | PMC |
http://dx.doi.org/10.3390/ma17112509 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organization and dynamics of chromatin compacted by gene-repressing factors are unknown.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1, Shuaifuyuan, Dongcheng District, Beijing, China.
Background: Perioral rejuvenation is challenging due to the lack of spatial anatomical understanding of the labiomandibular fold (LMF). The LMF's formation mechanism remains underexplored due to intricate relationships between musculature and subcutaneous structures. This study aimed to clarify the three-dimensional structures of the LMF using micro-computed tomography and histology.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA.
The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Acropolis Restoration Service, Hellenic Ministry of Culture, 10555 Athens, Greece.
This study focuses on the geotechnical evaluation of the foundation conditions of the Agrippa Monument at the Acropolis of Athens, aiming to propose interventions to improve stability and reduce associated risks. The assessment reveals highly uneven foundation conditions beneath the monument. A thorough collection of bibliographic references and geotechnical surveys was conducted, classifying geomaterials into engineering-geological units and evaluating critical parameters for geotechnical design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!