Optimizing the Sintering Conditions of (Fe,Co)(P,Si) Compounds for Permanent Magnet Applications.

Materials (Basel)

College of Physics and Electronic Information, Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, 81 Zhaowuda Rd., Hohhot 010022, China.

Published: May 2024

(Fe,Co)(P,Si) quaternary compounds combine large uniaxial magnetocrystalline anisotropy, significant saturation magnetization and tunable Curie temperature, making them attractive for permanent magnet applications. Single crystals or conventionally prepared bulk polycrystalline (Fe,Co)(P,Si) samples do not, however, show a significant coercivity. Here, after a ball-milling stage of elemental precursors, we optimize the sintering temperature and duration during the solid-state synthesis of bulk FeCoPSi compounds so as to obtain coercivity in bulk samples. We pay special attention to shortening the heat treatment in order to limit grain growth. Powder X-ray diffraction experiments demonstrate that a sintering of a few minutes is sufficient to form the desired FeP-type hexagonal structure with limited secondary-phase content (~5 wt.%). Coercivity is achieved in bulk FeCoPSi quaternary compounds by shortening the heat treatment. Surprisingly, the largest coercivities are observed in the samples presenting large amounts of secondary-phase content (>5 wt.%). In addition to the shape of the virgin magnetization curve, this may indicate a dominant wall-pining coercivity mechanism. Despite a tenfold improvement of the coercive fields for bulk samples, the achieved performances remain modest ( ≈ 0.6 kOe at room temperature). These results nonetheless establish a benchmark for future developments of (Fe,Co)(P,Si) compounds as permanent magnets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11172535PMC
http://dx.doi.org/10.3390/ma17112476DOI Listing

Publication Analysis

Top Keywords

fecopsi compounds
12
compounds permanent
8
permanent magnet
8
magnet applications
8
fecopsi quaternary
8
quaternary compounds
8
bulk fecopsi
8
bulk samples
8
shortening heat
8
heat treatment
8

Similar Publications

Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.

Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.

View Article and Find Full Text PDF

Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.

View Article and Find Full Text PDF

Tuberculosis vaccines and therapeutic drug: challenges and future directions.

Mol Biomed

January 2025

Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.

Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research.

View Article and Find Full Text PDF

Anti-TMV activity based flavonol derivatives containing piperazine sulfonyl: Design, synthesis and mechanism study.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.

A series of flavonoid derivatives containing piperazine sulfonate were designed and synthesized. The results of antiviral experiments in vivo showed that some target compounds had good inhibitory effect on tobacco mosaic virus (TMV). The EC values of S15 and S19 curative activity were 174.

View Article and Find Full Text PDF

Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!